期刊文献+

基于时空关联的高校社会网络关系挖掘方法研究 被引量:3

Research of Method on Mining Social Network Relationship in Colleges Based on Spatio-Temporal Correlation
在线阅读 下载PDF
导出
摘要 以高校学生刷卡消费数据为分析对象,定义了学生之间呈现出的时空关联关系.设计了算法检测时空关联关系,利用检测出的时空关联关系构建社会关系网络,并对社会关系网络进行优化,进而挖掘出学生之间的社会网络关系.通过判断学生是否在同一个班级来验证挖掘出的社会网络关系.实验表明本方法能够较为准确地挖掘出学生的社会网络关系. Based on the data of university students’ consumption,spatio-temporal correlation between students is defined.We designs an algorithm to detect spatio-temporal association,and the social relations network is constructed by using the spatiotemporal relation detected,and the social network is optimized,and social network relationship between students is found out.The social network relationship is verified by judging whether the students are in the same class.Experiments show that this method can accurately extract the social network relationship of students.
作者 李有增 周全 蒋鸿玲 LI You-zeng;ZHOU Quan;JIANG Hong-ling(Capital Normal University,Beijing 100048,China;Internet of Things Institute,CASC,Beijing 100094,China)
出处 《微电子学与计算机》 CSCD 北大核心 2018年第12期137-140,共4页 Microelectronics & Computer
关键词 时空关联 社会网络关系 消费数据 spatio-temporal correlation social network relationship consumption data
作者简介 李有增,男,(1962-),硕士,副研究员.研究方向为智慧校园、智慧教育、人才培训;周全,男,(1982-),硕士,助理研究员.研究方向为智慧校园、智慧教育、人才培训;通讯作者:蒋鸿玲,女,(1986-),博士,高级工程师.研究方向为智慧校园、大数据.E-mail:hangtian_jhl@163.com.
  • 相关文献

参考文献4

二级参考文献42

  • 1郭岩,白硕,杨志峰,张凯.网络日志规模分析和用户兴趣挖掘[J].计算机学报,2005,28(9):1483-1496. 被引量:62
  • 2D Watts, S Strogatz. Collective Dynamics of ‘ Small World' Networks[J]. Nature, 1998,393(6684) :440-442.
  • 3I Foster, C Kesselman, S Tueckel. The Anatomy of the Grid: Enabling Scalable Virtual Organizations[ C ]. Proceedings of the 1 st IEEE/ACM International Symposium on Cluster Computing and the Grid,2001.6-7.
  • 4S Wasserman, K Faust. Social Network Analysis: Methods and Applications[ M]. Cambridge: Cambridge University Press, 1994.
  • 5M H Zack. Researching Organizational Systems Using Social Network Analysis[ C]. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, 2000.
  • 6Y Upadrashta, J Vassileva, W Grassmann. Social Networks in Peer-to-Peer Systems[ C ]. Proceedings of the 38th Annual Hawaii International Conference on System Sciences, 2005.
  • 7Hannon J, Bennett M, Smyth B. Recommending twitter users to follow using content and collaborative filtering approaches/ /Proceedings of the 4th ACM Conference on Recommender Systems (Rec'Sys ' 2010). New York, USA, 2010: 99-206.
  • 8Tang Jie, Sun Jimeng, Wang Chi, Yang Zi. Social influence analysis in large-scale networks/ /Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009: 807-816.
  • 9Wu S, Hofman J M, Mason W A, Watts DJ. Who says what to whom on twitter/ /Proceedings of the 20th International Conference on World Wide Web (WWW?Il). Hyderabad , 2011: 705-714.
  • 10Jeon H, Kim T, Choi J. Adaptive user profiling for personalized information retrieval! /Proceedings of the 2008 International Conference on Convergence and Hybrid Information Technology. Busan , 2008: 836-841.

共引文献167

同被引文献31

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部