期刊文献+

基于相似性的关联规则启发式发现 被引量:2

Heuristic Way of Finding Association Rules Based on Similarity
在线阅读 下载PDF
导出
摘要 找出众多关联规则中用户感兴趣的关联规则 ,除靠最小支持度和最小可信度外 ,把相似性计算融合到通过剪枝选出用户感兴趣规则的模板理论中 .提出一种基于相似性的关联规则启发式发现方法 . To find the association rules of concern to clients among numerous discovered association rules, it is not enough to rely simply on the minimal support and minimal confidence. The similarity into the template method is introduced, which finds the rules of concern by pruning. A heuristic way of finding association rules is presented, based on similarity. This method well tackles these unreasonable pruning problems that owe themselves to illegibility in descriptions in the template method.
作者 李炜 宋瀚涛
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2002年第1期98-100,120,共4页 Transactions of Beijing Institute of Technology
关键词 关联规则 相似性 启发式发现 模板理论 事务数据库 规则挖掘 不合理剪枝 association rules similarity heuristic finding template method
  • 相关文献

参考文献3

二级参考文献12

  • 11,Agrawal R, Mannila H, Srikant R et al. Fast discovery of association rules. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California: AAAI/MIT Press, 1996. 307-328
  • 22,Brin S, Motwani R, Ullman J D et al. Dynamic itemset counting and implication rules for market basket data. In: Proc the ACM SIGMOD International Conference on Management of Data, Tucson, Arizon, 1997. 255-264
  • 33,Fayyad U M, Piatesky-shapiro G, Smyth P P. From data mining to knowledge discovery: an overview. In: Fayyad M, Piatetsky-Shapiro G, Smyth P eds. Advances in Knowledge Discovery and Data Mining. California:AAAI Press, 1996. 1-36
  • 44,Piatesket-Shapiro G. Discovery, analysis, and presentation of strong rules. In: Piatesky-Shapiro G, Frawley W J eds. Advances in Knowledge Discovery and Data Mining. Menlo Park, California:AAAI/MIT Press, 1991. 229-238
  • 55,Silberschatz A, Stonebraker M, Ullman J. What makes patterns interesting in knowledge discovery sysstems. IEEE Trans on Knowledge and Data Engineering, 1996, 8(6):970-974
  • 66,Symth P, Goodman R M. An information theoretic approach to rule induction from databases. IEEE Trans on Knowledge and Data Engineering, 1992, 4(4):301-316
  • 77,Toivonen H, Klemettinen M, Ronkainen P et al. Pruning and grouping discovered association rules. In: Mlnet Workshop on Statistics, Machine Learning, and Discovery in Database, Gete, Greece, 1995. 47-52
  • 81.Mika Klemettinen,Heikki Mannila,Pirjo Ronkainen,et al.Finding Insteresting Rules from Large Sets of Discovered Association Rules. Department of Computer Science University of Helsinki,Finland
  • 92.Ramakrishnan Srikant,Quoc Vu,Rakesh Agrawal.Mining Association Rules with Item Constraints.IBM Almaden Research Center,650 Harry Road San Jose,CA 95120 USA
  • 103.Christopher J Matheus,Gregory Piatetsky-shapiro.Selecting and Re- porting What is Interesting.GTE Laboratories Incororated,Dwight MCNEIL GTE Service Corporation

共引文献25

同被引文献16

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部