摘要
对一类描述具有扩散的捕食与被捕食生态系统的偏微分方程组进行了研究 .该系统考虑了种群对于时间及空间的依赖性 ,当不考虑空间影响时 ,方程简化为一类具有功能性反应的Lotka_Volterra模型 .应用反应 扩散方程的单调方法和不变区域理论 ,证明了解是一致有界的 ,且所有解最终进入相空间中的一个固定区域 .
A kind of predator_prey system with diffusion is investigated, in which the dependence of species on time and spatial is taken into account. The system is reduced to the Lotka-Volterra model with functional response when spatial dependence and is neglected. Using monotone method and invariant region theory of reaction-diffusion equations, it is proved that the solutions are uniformly bounded, and it is shown that all solutions asymptotically enter a fixed region in phase space. The question of stability of those constant states which correspond to the extinction of one or two species is also discussed.
出处
《陕西师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2002年第1期6-10,共5页
Journal of Shaanxi Normal University:Natural Science Edition
基金
辽宁省自然科学基金资助项目 (96 2 6 2 0 )
陕西师范大学青年科学基金资助项目 (2 0 0 1)