期刊文献+

复Banach空间中C-R方程的全纯解 被引量:1

The Holomorphic Solutions of C-R Equations in Complex Banach Space
原文传递
导出
摘要 二重复数是复数的一种推广,在其上的全纯映照族对应于C2上满足复Cauchy-Riemann方程的全纯映照族.可以证明,这样的映照族本质上是由二个单复变数的全纯函数的直乘积所组成的族.本文证明:即使在Banach空间中,Cauchy-Riemann方程的全纯解,具有同样的性质. A commutative generalization of complex numbers is called bicomplex numbers. A holomorphic function of bicomplex number corresponds to a holomorphic mapping on C2 which satisfies the complex Cauchy-Riemann equations. It is known that the holomorphic solutions of complex Cauchy-Riemann equations are essentially the direct product of two holomorphic functions of one complex variable. In this short note, we prove that in the complex Banach space, the holomorphic solutions of the Cauchy-Riemann equations have the same property.
作者 龚昇 刘太顺
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2002年第1期1-6,共6页 Acta Mathematica Sinica:Chinese Series
基金 973计划 国家自然科学基金(19971082 19871081) 安徽省自然科学基金资助项目
关键词 复BANACH空间 CAUCHY-RIEMANN方程 C2-全纯函数 T-全纯映照 全纯解 Complex Banach space Cauchy-Riemann equations Bicomplex number C2-holomorphic function T -holomorhic mapping
  • 相关文献

参考文献8

  • 1Kautor I. L., Hypercomplex Numbers, New York: Spinger-Verlag, 1989.
  • 2Brackx F., Delanghe, R.and Sommen, Clifford Analysis, Pitman Advanced Publishing Program, 1982.
  • 3Price G. B., An introduction to Multicomplex Spaces and Functions, New York: Marcel Dekker Inc., 1991.
  • 4Rochen D., Sur une généralisation des nombres complexes: les tétranombres, Université de Montréal, 1997.
  • 5Shabat B. V., Introduction to Complex Analysis Part II: Functions of several variables, AMS, 1992.
  • 6Rochen D., A Bloch Constant for Hyperholomorphic Functions, preprint, 2000.
  • 7Gong S., Convex and Starlike Mappings in Several Complex Variales, Science Press/Kluwer Academic Pub-lishers, 1998.
  • 8Suffridge T. J., Starlike and convex maps in Banach spaces, Pacific Jour. of Math., 1973, 46: 575-589.

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部