摘要
二重复数是复数的一种推广,在其上的全纯映照族对应于C2上满足复Cauchy-Riemann方程的全纯映照族.可以证明,这样的映照族本质上是由二个单复变数的全纯函数的直乘积所组成的族.本文证明:即使在Banach空间中,Cauchy-Riemann方程的全纯解,具有同样的性质.
A commutative generalization of complex numbers is called bicomplex numbers. A holomorphic function of bicomplex number corresponds to a holomorphic mapping on C2 which satisfies the complex Cauchy-Riemann equations. It is known that the holomorphic solutions of complex Cauchy-Riemann equations are essentially the direct product of two holomorphic functions of one complex variable. In this short note, we prove that in the complex Banach space, the holomorphic solutions of the Cauchy-Riemann equations have the same property.
出处
《数学学报(中文版)》
SCIE
CSCD
北大核心
2002年第1期1-6,共6页
Acta Mathematica Sinica:Chinese Series
基金
973计划
国家自然科学基金(19971082
19871081)
安徽省自然科学基金资助项目