期刊文献+

锂离子蓄电池正极材料LiMn_2O_4掺钒的研究 被引量:6

Effects of the vanadium-doping on the structure and electrochemical performance of LiMn_2O_4
在线阅读 下载PDF
导出
摘要 采用低温液相碳酸盐法合成了掺杂钒的Li Mn O正极材料。X射线衍射分析表明当掺钒量小于 2 0 % ,合成的电极材料Li V Mn O仍能保持LiMn2 O4 的尖晶石结构 ,当掺钒量超过 2 0 %则合成产物中不含尖晶石结构的LiMn2 O4 。循环伏安和恒电流充放电实验证实掺杂钒可改善Li Mn O正极材料电化学反应的可逆性 ,并提高其比容量 ;掺钒量大于10 %时 。 The cathode material Li Mn O with vanadium doping for lithium ion battery was prepared by low temperature liquid phase carbonate method.X ray diffraction analysis indicates that the prepared cathode material Li V Mn O still maintains the structure of spinel LiMn 2O 4 when the content of vanadium doping is less than 20%. However, when the addition amount of vanadium in the reactant is more than 20%, there is no spinel LiMn 2O 4 in the product. The results of cyclic voltammetry and constant current charge/discharge experiments show that vanadium doping improves the reversibility of the Li Mn O cathode material and increases its specific capacity. The production of impure phase in the product cause the electrochemical performance of the prepared material fade when the content of vanadium doping is more than 10%.
出处 《电源技术》 CAS CSCD 北大核心 2001年第4期262-263,274,共3页 Chinese Journal of Power Sources
基金 重庆大学学科建设基金资助项目 (无编号 )
关键词 锂离子蓄电池 正极材料 掺杂 LIMN2O4 lithium ion battery cathode material vanadium doping
  • 相关文献

参考文献3

  • 1Liu W,J Electrochem Soc,1998年,145卷,2期,459—461页
  • 2GUYOMAND D,J Electrochem Soc,1992年,139卷,937—948页
  • 3张文保,化学电源导论,1992年

同被引文献113

  • 1陈立宝,贺跃辉,汤义武.采用固相配位法制备超细LiMn_2O_4正极材料[J].中南大学学报(自然科学版),2005,36(3):390-395. 被引量:12
  • 2[31]Eriksson T, Andersson A M, Bishop A G. Surface analysis of LiMn2O4 electrodes in carbonate-based electrolytes[J].J Electrochem Soc, 2002,149(1):A69~A78
  • 3[32]Mac Neil D D, Hatchaid T D, Dahn J R. A comparison be tween the high temperature electrode/electrolyte reactions of LixCoO2 and LixMn2O4[J].J Electrochem Soc, 2001,148(7):A663~A667
  • 4[1]Blyr A,Sigala C,Amatucci G etal. Self-discharge of LiMn2O4/C Li-ion cells in their discharge state[J]. J Electrochem Soc, 1998,145:194~209
  • 5[4]Youhei Shiraishi, Izumi Nakai, Toshio Tsubata, et al. In situ transmission X-ray absorption fine structure analysis of the charge-diacharge process in LiMn2O4,a rechargeable lithium battery material[J].Journal of Solid State Chemistry, 1997,133:587~590
  • 6[7]Yen-Pei Fu, Yu-Hsiu Su, Cheng-Hsiung Lin. Comparion of microwave-induced combusion and solid-state reaction for synthesis of LiMn2-xCrxO4 powders and their electro chemical properties[J]. Solid State Ionics, 2004, 166:137~146
  • 7[9]Yan H W, Huang X J, Chen L Q. Microwave synthesis of LiMn2O4cathode material[J].J Power Sources, 1999,81~82;647~650
  • 8[11]Matsuhiko Nishizawa, et al. Template synthesis of polypyrrole-coated spinel LiMn2O4 nanotubules and their properties as cathode active material for lithium batteries[J]. J Electrochem Soc, 1997, 144(6) :1923~192
  • 9[12]Yang W S, Zhang G, Xie J Y, et al. A combusion method to prepare spinel phase LiMn2O4 cathode materials for lithiumion batteries [J]. J Power Sources, 1999, 81~82:412~415
  • 10[13]Gao Y, Dahn J R. Correlation between the growth of the3. 3V discharge plateau and capacity fading in Li1+xMn2-xO4materials[J]. Solid State Ionics, 1996(84):33~40

引证文献6

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部