期刊文献+

固体吸附系统中传热过程的数学模型及其数值解法

Mathematical Model and Numerical Solution of the Heat Transfer Process in the Solid Adsorption System
在线阅读 下载PDF
导出
摘要 对固体吸附系统中的传热过程进行了合理的数学建模 ,对吸附床内的热传导方程和换热管内流体的能量控制方程进行离散并利用控制容积法进行了模拟数值计算 ,在数学模型中加入了与其他模型不同的而更符合实际情况的随时间变化的边界条件 ,得到了较为满意的吸附床内吸附剂和换热管内流体的互相耦合的温度场 . In this paper, a theoretical analysis of the heat transfer process in a adsorber model is developed. For transient heat conduction in the bed, the unsteadystate Fourier heat conduction equation is applied. Based on some assumptions, boundary conditions and the energy governing equation of the fluid in the cartridge heater are obtained. By the application of control volume approach and implicit central difference scheme, the heat conduction equation and the energy governing equation are discretized, and finite difference equations for the pillar adsorber are derived for simulative numerical solution by computer. In comparison with other calculation models, the boundary condition is dependent on time and tallied with the actual situation more, and the conjugated temperature field in the bed and tube is obtained.
出处 《江西师范大学学报(自然科学版)》 CAS 2001年第4期324-330,共7页 Journal of Jiangxi Normal University(Natural Science Edition)
关键词 数学模型 数值计算 边界条件 耦合温度场 固体吸附式制冷/热泵系统 传热过程 mathematical model numberical solution boundary condition conjugated temperature field
  • 相关文献

参考文献3

二级参考文献10

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部