摘要
利用摄动方法讨论了一类耦合二自由度非线性系统,在小强度白噪声参数激励下系统运动模态的稳定性,获得了系统扩散过程的稳态概率密度的渐近表达式,由此获得了系统运动模态几乎必然稳定的充分必要条件。
In this paper, a perturbation approach is used to calculate the asymptotic growth rate of stochastically coupled two degree of freedom nonlinear stochastics systems. The noise is assumed to be white and of small intensity in order to calculate the explicit asymptotic formulas for the maximum Lyapunov exponent. The almost sure sample stability or instability of the four dimensional stochastic system depends on the sign of the maximum Lyapunov exponent.
出处
《应用力学学报》
CAS
CSCD
北大核心
1998年第1期22-29,共8页
Chinese Journal of Applied Mechanics
基金
国家自然科学基金
关键词
非线性耦合随机系统
最大LYAPUNOV指数
几乎必然稳定性
平稳概率密度
摄动法
nonlinear stochastic system, maximum Lyapunov exponent, almost sure sample stability, stable probability density function, perturbation method.