期刊文献+

基于相关函数的小波变换实现语音去噪研究

Study on Speech Denoising Based on Wavelet Transform Using of Correlation Function
在线阅读 下载PDF
导出
摘要 语音信号是非平稳的短时瞬态信号,有用信号与所含噪声处于同一频率段,采用滤波器形式的传统去噪方法,不能将噪声有效分离.小波变换具有时频局部分析的特点,通过将含噪信号进行分解,分离噪声信号,将有用信号进行重构,可有效地去除噪声.白噪声为平稳随机信号,在不同尺度上的小波变换是不相关的.本文根据白噪声和语音信号在不同尺度下的相关性表现,结合小波去噪的基本思想,提出一种基于相关函数的小波变换进行语音去噪的方法.经MATLAB仿真,相关函数确定的去噪方法,能有效去除语音信号的白噪声. Speech is non -stationary and short -time signal . The useful signal and noise ared contained in the same frequency band and the noise can not be effectively separated from the noisy speech using filters in the form of traditional de -noising method . Wavelet transform has the characteristics of time -frequency analysis , the useful signal is reconstructed after separating noise signal from the noisy speech . Wavelet transform is effectively of removing noise . White noises are not relevant at different scales of wavelet transform . a wavelet denoising method using correlation function is proposed in the paper . The de -noising method can effectively remove white noise from speech signal after MATLAB simulation and objective evaluation .
作者 李晓帆 尹胜
出处 《怀化学院学报》 2014年第5期61-65,共5页 Journal of Huaihua University
基金 湖南省自然科学基金科研项目"精准智能灌溉系统的研制"(07JJ6117)
关键词 相关函数 语音去噪 小波变换 白噪声 correlation function denoising wavelet transform white noise
作者简介 李晓帆,1975年生,男,湖南武冈人,讲师,研究方向:智能检测与信号处理.
  • 相关文献

参考文献5

  • 1潘泉,孟晋丽,张磊,程咏梅,张洪才.小波滤波方法及应用[J].电子与信息学报,2007,29(1):236-242. 被引量:117
  • 2Daubechies. Ten Lectures on Wavelets [M]. SIAM (1992).
  • 3Donoho D L. De - noising by soft - thresholding [ J]. IEEE Trans. on Inform. Theory, 1995, 41 (3): 613-627.
  • 4D. L. Donoho, wavelet shrinkage I. M [J]. Johnstone. Ideal spatial adaptation by Biometrika, 1994, 81 (3): 425-45.
  • 5Donoho D L and Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J] .J. of the Amer. Statist. Assoc., 1995, 90 (432): 1200- 1224.

二级参考文献74

  • 1Dragotti P L and Vetterli M. Wavelet footprints: theory,algorithms, and applications [J]. J. Amer. Statist. Assoc.,2003, 51(5): 1306-1323.
  • 2Johnstone I M and Silverman B W. Wavelet threshold estimators for data with correlated noise [J]. J. Royal Statistical Society B, 1997, 59(2): 319-351.
  • 3Jansen M and Bultheel A. Multiple wavelet threshold estimation bY generalized cross validation for data with correlated noise [J], IEEE Trans. on Image Proc,, 1999, 8(7):947-953.
  • 4Baduleseu P and Zaciu R. Removal of mixed-noise using order statistic filter and wavelet domain Wiener filter [A].Proceedings of the International Semiconductor Conference[C]. Sinaia Romania, 1999: 301-304.
  • 5Coifman R R and Donoho D L. Translation-invariant de-noising [A]. Wavelets in Statistics of Lecture Notes instatistics 103[C]. New York: Springer-Verlag, 1994:125-150.
  • 6Arne Kovac. Wavelet thresholding for unequally spaced data[D], Ph.D. Thesis, Faculty of Science, University of Bristol,1998.
  • 7Vanraes E, Jansen M, and Bultheel A. Stabilized wavelet transforms for non-equispaced data smoothing [J]. Signal Processing, 2002, 82(12): 1979-1990.
  • 8Malfait M and Roose D. Wavelet-based image denoising using a Markov random field a priori model [J]. IEEE Trans.on Imgae Proc., 1997, 6(4): 549-565.
  • 9Shark L K and Yu C. Denoising by optimal fuzzy thresholding in wavelet domain [J]. Electronics Letters, 2000,36(6): 581-582.
  • 10Mihcak M, Kozintsev I, and Ramchandran K, et al. Low-complexity image denoising based on statistical modeling of wavelet coefficients [J]. IEEE Signal Processing Lett., 1999,6(12): 300-303.

共引文献116

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部