期刊文献+

一类具logistic出生率的SIS传染病模型的全局稳定性 被引量:3

The dynamical analysis of an SIS epidemic model with the logistic birth rate
在线阅读 下载PDF
导出
摘要 许多传染病流行时间远超过物种的生命周期,基于此我们建立和研究了一类具logistic出生率的SIS传染病模型.利用微分方程稳定性理论,研究了平衡点的存在性及其稳定性的条件,并用Dulac函数证明了闭轨线和奇异闭轨线的不存在性,证明了各平衡点稳定的条件. The transmission time of many infectious diseases is longer than the lifetime of species. In this paper, we consider an SIS epidemic model with the logistic birth rate. By using the qualitative theory of ordinary differential equations and Dulac functions, we obtain the existence of equilibrium and stability conditions and the nonexistence of closed trajectory and singular closed trajectory. In addition,we prove the conditional factors for the stability of equilibrium.
出处 《陕西科技大学学报(自然科学版)》 2014年第4期167-171,共5页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(10771139) 南华大学研究生科研创新项目(2013XCX10)
关键词 传染病模型 LOGISTIC DULAC函数 动力性 epidemic model logistic Dulac function dynamics
作者简介 杜鹏(1988-),男,山西朔州人,在读硕士研究生,研究方向:微分方程与动力系统
  • 相关文献

参考文献13

二级参考文献47

共引文献34

同被引文献25

  • 1崔景安,叶萌,宋国华,张艳.北京市手足口病的流行趋势预测[J].生物数学学报,2014,29(1):131-135. 被引量:5
  • 2王拉娣.具有非线性传染率的两类传染病模型的全局分析[J].工程数学学报,2005,22(4):640-644. 被引量:16
  • 3李颖路,雷磊,马润年.一类离散的传染病模型分析[J].空军工程大学学报(自然科学版),2006,7(3):85-88. 被引量:4
  • 4L. Allen. Some discrete-time SI, SIR, and SIS epidemic models[J]. Math. Biosci, 1994,124 : 83-105.
  • 5C. Castillo Chavez, A. Yakubu. Discrete-time SIS models with complex dynamics[J]. Nonliear Analysis, 2001,47 : 4 753-4 762.
  • 6J. FrankeA. Yakubu. Discrete-time SIS epidemic model in a seasonal environment[J]. SIAM J. Appl. Math, 2006, 66;1 563-1 587.
  • 7Y. Zhou, F. Paolo. Dynamics of a discrete age-structured SIS models[J]. Discrete and Continuous Dynamical Sys- tems,Series B,2004,4:843-852.
  • 8Cao H, Zhou Y. The discrete age-structured SEIT model with application to tuberculosis transmission in China[J]. Math. Comput. Model,2012,55(3) :385-395.
  • 9Zhou Y, Ma Z. Global stability of a class of discrete age- structured SIS models with immigration[J]. Math. Biosci. Eng. ,2009,6:409-425.
  • 10Ma X, Zhou Y,Cao H. Global stability of the endemic e- quilibrium of a discrete SIR epidemic model[J]. Advances in Difference Equations, 2013 ( 1 ) : 1-19.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部