期刊文献+

一种基于Pauli分解和支持向量机的全极化合成孔径雷达监督分类算法 被引量:9

A Supervised Classification Algorithm Based on Pauli Decomposition and SVM on Polarimetric SAR Image
在线阅读 下载PDF
导出
摘要 全极化合成孔径雷达(SAR)影像准确分类的一个重要前提是充分提取反映地物实际物理性质的特征。然而现有的全极化SAR特征提取算法和分类算法众多,却均存在各种各样的问题。无论极化特征提取方法还是分类算法,都会影响最终的分类精度。针对此问题,在多次实验的基础上,提出一种综合Pauli极化特征分解和支持向量机(SVM)的分类策略,简称为Pauli-SVM算法。首先通过经典的Pauli分解法提取全极化SAR影像的奇次散射、偶次散射、体散射等极化特征;并将这些信息组合成一个特征向量,然后引入高精度的SVM分类算法,选择训练样本后对全极化SAR影像进行监督分类。在江苏溧水和南京横溪镇两个研究区,以ALOS卫星的PALSAR影像为研究数据,进行监督Wishart分类算法、Freeman特征提取法结合SVM的分类算法、Yamaguchi特征提取法结合SVM的分类算法、Pauli-SVM算法的分类对比实验。结果表明,新提出的PauliSVM算法可以有效地提高分类的准确性。 An important precondition of accurate classification on Polarimetric SAR image is sufficient feature extraction which can reflect ground objects' physical attributes. However, there's many feature extraction and classi- fication algorithms for polarimetric SAR image, which have all kinds of problems. Both polarimetric feature extrac- tion methods and classification algorithms can affect the final classification accuracy. Aiming at this problem, on the basis of many experiments, a new classification strategy called Pauli-SVM for short is proposed by synthesizing Pauli polarimetric feature decomposition and SVM algorithm. Firstly polarimetric features extracted from classic Pauli decomposition including odd scattering, double scattering and volume scattering are used to form an eigenvec- tor. Secondly, after training samples are selected, supervised classification can be done on polarimetric SAR image by importing SVM algorithm which can get high classification accuracy. Finally, experiments of contrasting super- vised Wishart algorithm, SVM algorithm combined by Freeman feature extraction method, SVM algorithm combined by Yamaguchi feature extraction method and Pauli-SVM algorithm are done on two research plots including Lishui in Jiangsu province and Hengxi Town in Nanjing city with PALSAR image from ALOS satellite. The result turns out that new proposed Pauli-SVM algorithm can efficiently promote classification accuracy.
出处 《科学技术与工程》 北大核心 2014年第17期104-108,142,共6页 Science Technology and Engineering
基金 国家自然科学基金(41171323) 中国地质调查局地质调查工作项目(1212011120229) 江苏省自然科学基金(BK2012018) 地理空间信息工程国家测绘地理信息局重点实验室开放基金(201109)资助
关键词 全极化SAR Pauli分解 Freeman分解 Yamaguchi分解 SVM 复Wishart分布 PolSAR Pauli decomposition Freeman decomposition Yamaguchi decomposition SVM complex wishart distribution
作者简介 陈军(1978-),男,汉族,博士研究生。研究方向:全极化合成孔径雷达遥感图像处理、机器学习在遥感影像分析中的应用。 通信作者简介:杜培军E-mail:dupjrs@126.com。
  • 相关文献

参考文献11

  • 1Hughes G. On the mean accuracy of statistical pattemrecognizers.IEEE Transactions on Information Theory, 1968, 14( 1 ) :55-63.
  • 2Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Transactions on Geosci- ence and Remote Sensing, 1997; 1 (35) :68-78.
  • 3Freeman A, Durden S L. A three-component scattering model for po- larimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 1998 ; 36(3) :963-973.
  • 4Yamaguchi Y, Mofiyama T, Ishido M, et al. Four-component scatter- ing model for polarimetric SAR image decomposition. IEEE Transac- tions on Geoscience and Remote Sensing, 2005 ;43 ( 8 ) : 1699-1706.
  • 5Yamaguchi Y, Sato A, Boerner W M,et al. Four-component scatter- ing power decomposition with rotation of coherency matrix. IEEE Transactions on Geoscience and Remote Sensing, 2011; 49 (6): 2251-2258.
  • 6Lee J S, Grunes M R, Pottier E, et al. Unsupervised terrain classifi- cation preserving polarimetric scattering characteristics. IEEE Trans- actions on Geascience and Remote Sensing,2004 ; 42 (4) :722-731.
  • 7Lee J S, Grunes M R, Ainsworth T L. Unsupervised classification using polarimetric decomposition and the complex Wishart classifier. IEEE Transactions on Geoscience and Remote Sensing, 1999; 9 ( 37 ) :2249-2258.
  • 8Pottier E, Lee J S. Application of the H/A/alpha polarimetric decom- position theorem for unsupervised classification of fully polarimetric SAR data based on the Wishart distribution. Proceeding of Committee on Earth Observing Satellites SAR Workshop, Toulouse, 1999: 335-340.
  • 9郎丰铠,杨杰,赵伶俐,张兢,李德仁.基于Freeman散射熵和各向异性度的极化SAR影像分类算法研究[J].测绘学报,2012,41(4):556-562. 被引量:25
  • 10赵伶俐,杨杰,李平湘,郎丰铠,史磊.极化SAR影像弱散射地物统计分类[J].遥感学报,2013,17(A02):312-319. 被引量:12

二级参考文献21

  • 1LEE J S, POTTIER E. Polarimetric Radar Imaging: from Basics to Applications [ M ]. Boca Raton: CRC Press, 2009.
  • 2FORMONT P, PASCAL F, VASILE G, et al. Statistical Classification for Heterogeneous Polarimetric SAR Images [J]. IEEE Selected Topics in Signal Processing, 2011, 5 (3): 567-576.
  • 3HOEKMAN D H, VISSERS M A M, TRAN T N. Unsu- pervised Full Polarimetric SAR Data Segmentation as a Tool for Classification of Agricultural Areas [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2011, 4(2):402-411.
  • 4CLOUDE S R, POTTIER E. An Entropy Based Classification Scheme for Land Applications of Polarimetric SAR [J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(1): 68-78.
  • 5LEEJ S, GRUNES M R, AINSWORTH T L, et al. Unsupervised Classification Using Polarimetric Decomposition and Complex Wishart Classifier[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(5) : 2249-2258.
  • 6POTTIER E, LEE J S. Application of the H/A/alpha Polarimetric Decomposition Theorem for Unsupervised Classification of Fully Polarimetric SAR Data Based on the Wishart Distribution [C]//Proceeding of Committee on Earth Observing Satellites SAR Workshop.[S. l.]: Geophysical Institute, 1999 : 335-340.
  • 7FERRO FAMIL L, POTTIER E. Unsupervised Classifi cation of Multi frequency and Fully Polarimetric SAR Images Based on the H/A/Alpha Wishart Classifier[J]. IEEE Transactions on Geoscienee and Remote Sensing, 2001,39(11): 2332-2342.
  • 8LEE J S, GRUNES M R, POTTIER E, et al. Unsupervised Terrain Classification Preserving Polarimetric Scattering Characteristics [J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(4): 722-731.
  • 9CAO F, HONG W, WU Y R. An Improved Cloude-Pottier Decomposition Using H/a/SPAN and Complex Wishart Classifier for Polarimetric SAR Classification [ C] // Proceedings of 2006 IEEE CIE International Conference on Radar. Shanghai: IEEE, 2006.
  • 10PARK S, MOON W M. Unsupervised Classification of Scattering Mechanisms in Polarimetric SAR Data Using Fuzzy Logic in Entropy and Alpha Plane [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(8) : 2652-2664.

共引文献32

同被引文献86

引证文献9

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部