期刊文献+

基于奇异值分解和相关峭度的滚动轴承故障诊断方法研究 被引量:21

Rolling element bearing fault diagnosis based on singular value decomposition and correlated kurtosis
在线阅读 下载PDF
导出
摘要 为了从复杂的轴承振动信号中提取微弱的故障信息,将相关峭度引入滚动轴承故障诊断领域,结合奇异值分解(Singular Value Decomposition,SVD)和相关峭度,提出了一种新的滚动轴承故障特征提取方法。该方法首先利用SVD对轴承振动信号进行分解,然后根据相关峭度选取SVD分解后的分量,提取出滚动轴承的弱故障信号。通过对轴承内圈故障的仿真和实验研究验证了该方法的有效性。 In order to extract the faint fault information from bearing complicated vibration signals,the correlated kurtosis was introduced into the field of rolling bearing fault diagnosis.Combining SVD and the correlated kurtosis,a new feature extraction method for rolling bearing faults was proposed.According to this method,the bearing vibration signals were decomposed with the SVD method firstly,then with the correlated kurtosis the decomposed components were selected,from them the weak fault signals were extracted.The effectiveness of the method was demonstrated with both simulation and test results.
出处 《振动与冲击》 EI CSCD 北大核心 2014年第11期167-171,共5页 Journal of Vibration and Shock
基金 国家自然科学基金资助项目(50979109) 国防重点预研基金资助项目(9140A27020413JB11076)
关键词 奇异值分解 相关峭度 滚动轴承 故障诊断 singular value decomposition (SVD) correlated kurtosis rolling bearing fault diagnosis
作者简介 张永祥男,教授,博士生导师,1963年2月生
  • 相关文献

参考文献10

二级参考文献82

共引文献401

同被引文献199

引证文献21

二级引证文献168

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部