期刊文献+

基于动态双极值模糊软集的群决策方法 被引量:3

Group decision making method based on dynamic bipolar-value fuzzy soft sets
在线阅读 下载PDF
导出
摘要 针对实际问题中双极值模糊软集随时间变化的影响,定义了动态双极值模糊软集等概念,讨论了相关运算及性质。根据时间权重符合对数增长模型得到权重确定公式。利用集成思想定义双极值模糊软集的运算并给出几何加权平均算子的计算公式,将动态双极值模糊软集集成为综合双极值模糊软集。利用水平软集算出各对象的机会值,得出最优决策。通过实例分析证明此决策方法的合理性与可行性。 For the situation that bipolar-value fuzzy soft sets information changes with time, the concept of dynamic bipolar-value fuzzy soft set is defined, and relative operations and properties have been discussed, too. The weight determination formulas are obtained based on the logarithmic growth model. Then operation of bipolar-value fuzzy soft sets is defined with aggregation thought and the computational formula of the geometric weighted average operator has been given, and dynamic bipolar-value fuzzy soft sets have been aggregated into collective bipolar-value fuzzy soft set. The optimal deci-sion can be obtained by calculating choice value of objects with the level soft set. A practical example has been analyzed to verify the reasonability and feasibility of the approach.
出处 《计算机工程与应用》 CSCD 2014年第12期38-41,76,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.61073117) 安徽大学学术创新团队资助(No.KJTD001B)
关键词 群决策 动态双极值模糊软集 对数增长模型 几何加权平均算子 水平软集 group decision making dynamic bipolar-value fuzzy soft sets logarithmic growth model geometric weightedaverage operator level soft set
作者简介 钱庆庆(1988-),女,硕士研究生,研究领域:不确定决策、智能汁算等. 吴涛(1970-),男,博士,教授,研究领域:智能计算、不确定决策问题等. 赵妍(1989-),女,硕士研究生,研究领域:智能计算等. 赵蓝天(1989-),男,硕士研究生,研究领域:智能计算。E-mail:qingqing-qian@l26.com.
  • 相关文献

参考文献17

  • 1Zadeh L A.Fuzzy sets[J].lnformation and Control, 1965,8 (3) :338-353.
  • 2徐泽水.不确定多属性决策方法及应用[M].北京:清华大学出版社.2005.
  • 3Atanassov K.Intuitionistic fuzzy sets[J].Fuzzy Sets and Systems, 1986,20( 1 ) : 87-96.
  • 4Pawlak Z.Rough sets[J].International Journal of Informa- tion and Computer Sciences, 1982, 11:341-356.
  • 5缪柏其, 胡太忠. 概率论教程[M]. 2版. 合肥: 中国科学技术大学出版社, 2009.
  • 6Zhang W R.Bipolar fuzzy sets and relations:a computa- tional framework for cognitive modeling and multiagent decision analysis[C]//Proceedings of IEEE Conference, 1994 : 305-309.
  • 7Lee K M.Comparison of interval-valued fuzzy sets, intu- itionistic fuzzy of sets, and bipolar-valued fuzzy sets[J]. Journal of Fuzzy Logic Intelligent Systems, 2004, 14: 125-129.
  • 8Molodtsov D.Soft set theory--first results[J].Computers and Mathematics with Application, 1999,37 : 19-31.
  • 9Feng F,Young Bae Jun.An adjustable approach to fuzzy soft set based decision making[J].Journal of Computa- tional and Applied Mathematics, 2010,234 : 10-20.
  • 10Jiang Y C,Tang Y,Chen Q M.An adjustable approach to intuitionistic fuzzy soft sets based decision making[J]. Applied Mathematical Modeling, 2011,35 : 824-836.

二级参考文献16

  • 1Zadeh L A.Fuzzy sets[J].Information and Control,1965,8(3):338-353.
  • 2Gau W L,Buehrer D J.Vague sets[J].IEEE Transactions on Systems Man and Cybernetics,1993,23(2):610-614.
  • 3Molodtsov D.Soft set theory-first results[J].Computers and Mathematics with Applications,1999,37:19-31.
  • 4Feng F,Jun Y B,Zhao X.Soft semirings[J].Computers and Mathematics with Applications,2008,56(10):2621-2628.
  • 5Jun Y B,Lee K J,Zhan J.Soft p-ideals of soft BCI-algebras[J].Computers and Mathematics with Applications,2009,58(10):2060-2068.
  • 6Maji P K,Biswas R,Roy A R.Fuzzy soft sets[J].Journal of Fuzzy Mathematics,2001,9(3):589-602.
  • 7Maji P K,Biswas R,Roy A R.Intuitionistic fuzzy soft sets[J].Journal of Fuzzy Mathematics,2001,9(3):677-692.
  • 8Yang X B,Lin T Y,Yang J Y,et al.Combination of interval-valued fuzzy set and soft set[J].Computers and Mathematics with Applications,2009,58(3):521-527.
  • 9Jiang Y C,Tang Y,Chen Q M,et al.Interval-valued in-tuitionistic fuzzy soft sets and their properties[J].Com-puters and Mathematics with Applications,2010,60:906-918.
  • 10Zhang W R.Bipolar fuzzy sets and relations:a compu-tational framework for cognitive modeling and multia-gent decision analysis[C]//Proceedings of IEEE Conference,1994:305-309.

共引文献45

同被引文献64

  • 1ZADEJ L A. Fuzzy sets [ J ]. Information and Control, 1965, 8: 338-353.
  • 2GORZALZANY M B. A method of inference in ap- proximate reasoning based on interval-valued fuzzy sets [J]. Fuzzy Sets and Systems, 1987, 21: 1-17.
  • 3MOLODTSOV D. Soft set theory-first results [ J ].Computers and Mathematics with Applications, 1999, 37(4) : 19-31.
  • 4MAJI P K, BISWAS R, ROY A R. Fuzzy soft sets [ J ]. Journal of Fuzzy Mathematics, 2001, 9 3 ) : 589-602.
  • 5ROY A R, MAJI P K. A fuzzy soft set theoretic ap- proach to decision making problems [ J ]. Journal of Computational and Applied Mathematics, 2007, 203 (2) : 412-418.
  • 6FENG F, JUN Y B, LIU X Y, et al. An adjustable approach to fuzzy soft set based on decision making [J]. Journal of Computational and Applied Mathemat- ics, 2010, 234(1) : 10-20.
  • 7GUAN X C, LI Y U, FENG F. A new order relation on fuzzy soft sets and its application[ J]. Soft Comput- er, 2013, 17(1) 63-70.
  • 8FENG F. Soft rough sets applied to muhicriteria group decision making[ J]. Annals of Fuzzy Mathematics and Informatics, 2011, 2(1): 69-80.
  • 9LAN J L, HE L P. A new method for fuzzy group deci- sion making based on α-level cut and similarity [ J ]. Information Science, 2005, 3614: 503-513.
  • 10SULAIMAN N H, MOHAMAD D. A set theoretic sim- ilarity measure for fuzzy soft sets and its application in group decision making [ J ]. Computer Science and Mathematics, 2013, 1522: 237-244.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部