期刊文献+

一种用于图象恢复的数据融合算法研究 被引量:4

An Image Data Fusion Method for Image Restoration
在线阅读 下载PDF
导出
摘要 近年来多传感器数据融合技术在图象处理领域得到广泛的重视和应用 .鉴于来自同一景物的多幅变形图象 ,其来源不同 ,每幅图象都带有不同的噪声 ,针对这种图象的恢复提出了一种基于自组织特征映射神经网络的图象融合算法 .该算法可分为 3步 ,第 1步是图象的预处理阶段 ,即对图象进行加权中值滤波 ,去除部分噪声 ;第 2步利用自组织神经网络对每幅图象的象素进行聚类分析 ;第 3步 ,对第 2步得到的结果按照一定规则进行融合 .仿真结果表明 ,该算法能明显提高图象质量 . Multisensor data fusion has played an important role in image processing recently. For some images from the same scene, each of them has different noise because of their different sources. This paper presents a new kind of image data fusion algorithm based on the self organizing feature map neural network. This algorithm can be performed with three steps. In the first step,the pretreatment of the images is performed by the weighted median filter in order to remove some noise. In the second stage we use self organizing feature map neural network to cluster the pixels of each image and then extend hard partition into fuzzy partition. In the third stage, we fuse the data from the last step in conformity to a certain rule. The simulation results illustrate that this new algorithm can improve the quality of the image distinctly and the pretreatment of the images can improve the fusion result efficiently.
出处 《中国图象图形学报(A辑)》 CSCD 北大核心 2001年第1期61-64,共4页 Journal of Image and Graphics
关键词 中值滤波 自组织特征映射神经网络 图象数据融合 图象恢复 图象处理 Median filter, Self organizing feature map neural network, Image data fusion
  • 相关文献

参考文献9

  • 1Hall D L.Linas J.An introduction to multisensor date fusion Proc. IEEE, 1997,85(1):6-23.
  • 2Wan W, Fraser D, Multisource data fusion with multiple selforganizing maps. IEEE Trans. Geosci. Remote Sensiag, 1999. 37(3):1344-1349.
  • 3Lorenzo B, Diego F P, Sebastiano S. Neural statistical approach to multitemporal and multisource remote-sensing image classification. IEEE Trans. Geoscl. Remote Sensing, 1999, 37(3), 13550-1359.
  • 4Deepa Kundur, Dimitrios Hatzinakos. A novel approach to multispectral blind image fusion. SPIE, 1997,3067:83-93.
  • 5Pongsak Ajjimaraage. Neural network model for fusion of visible and infrared sensor outputs. SPIE, 1988,1003:153-160.
  • 6Desachy J, Roux L, Numeric and symbolic data fusion: a computing approach to remote sensing images analysis. Pattern Recognition Letters, 1996,17(13):1361-1378.
  • 7Fitch J P, Covle E J. Gallagher N C Threshold decomposition of muhidimensional rank -ed order operations. IEEE Trans. Circuits And Systems, 1985.32(5) :445-450.
  • 8Lee Y H. Kassam S A. Generalized median filtering and related nonlinear filtering techniques. IEEE Trans. Acoust. , Speech, Signal Processing, 1985 . 33 (3):672- 683.
  • 9黄煦涛著.二维数字信号处理Ⅱ.胡光锐,郑志航,戚飞虎译.北京:科学出版社,1985:202~272.

同被引文献28

  • 1邹国良,李宏东.二维自适应空域递归算法用于图象恢复的研究[J].南京理工大学学报,1994,18(5):75-80. 被引量:2
  • 2方崇智 萧德云.过程辨识[M].北京:清华大学出版社,1998..
  • 3[1]Andrew J. Patti and Yucel Altunbasak, Artifact Reduction for Set Theoretic Super Resolution Image Reconstruetion with Edge Adaptive Constraints and Higher - Order Interpolants [ J ]. IEEE Transactions On Image Processing, 2001,10(1).
  • 4[2]Michael Elad, Yacov Hel - Or. A FsstSuper- Resolution Reconstruction Alg- orithm for Pure Translational Motion and Common Space-Invariant Blur[J]. IEEE T ransactions On Image Processing, 2001,10(8).
  • 5[3]Kim, S P, Su, W Y. Recursivehigh - resolution reconstruction of blurred - multifra me images[J]. IEEE Proceedings on International Conference Acoustics, Speech,and Signal Processing(ICASSP) Toronto, Canada, 1991: 2977 - 2980.
  • 6刘君华.智能传感器系统[M].西安电子科技大学出版社,2000,6..
  • 7Yang Dongyong, Y.Yuzo. Multi-sensor data fusion and its application to industrial control. SICE 2000, Iizuka, 2000, 215~220.
  • 8Y.Zhang, J.H.Liu, Y.H.Zhang, X.J.Tang. Cross sensitivity reduction of gas sensors using genetic algorithm neural network. Optical Engineering, 2002, 41(3):615~625.
  • 9B.V.Dasarathy. Information fusion-a new journal for the new millennium. Information Fusion, 2000, 1:1~2.
  • 10F.Zee, J.W.Judy. Micromachined polymer-based chemical gas sensor array. Sensors Actuators B, 2001, 72:120~128.

引证文献4

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部