期刊文献+

面向集成电路的大尺寸单晶石墨烯的可控制备方法 被引量:4

A Controllable Preparation Method for IC-Oriented Large Scale Single Crystal Graphene
在线阅读 下载PDF
导出
摘要 提出一种采用化学气相沉积工艺进行大面积单晶结构石墨烯岛的可控制备方法。在Ar环境中通过控制退火时间、生长温度来控制石墨烯岛的成核密度和生长形态;采用FeCl3溶液对衬底表面预处理并调控H2与CH4的流量比来改善石墨烯岛的分形;延长生长时间来扩大单晶石墨烯岛尺寸。实验结果表明:该制备方法可以控制石墨烯具有四边形、六边形、搭叠形等不同形态,可以控制四边形石墨烯由狭长型、燕翅型、蝴蝶型最终过渡到饱满的无分形结构的正方形形态,可以将六边形石墨烯岛尺寸从几十微米扩大到200微米以上,并且得到双层搭叠型六边形石墨烯;采用该方法生长出来的单晶石墨烯可以避免连续多晶石墨烯的边界散射效应,保持较高的迁移率,且尺寸较大,具有单原子层结构和不同的生长形态,解决了集成电路所需要的百微米以上量级的单晶结构、晶格取向一致的石墨烯的制造问题。 A controllable preparation method for synthesizing hundreds of micro-sized singlecrystal grapheme is proposed by regulating the process of chemical vapor deposition.Nucleation density and morphology of graphene is controlled by annealing time and temperature in Ar atmosphere.Fractal structure of grapheme is improved by using substrate pretreatment by FeC13 and controlling ratio of H2 and CH4 flows,and the size of graphene is increased by extending growth time.Experimental results show that the proposed method could control the graphene with different structure such as quadrilaterals,hexagons,and stacks.Quadrilateral graphene could be controlled from fractal structure with narrow,swallow wings,or butterfly to non-fractal structure in square.The size of hexagon graphene can be increased from dozens of micron to more than 200 microns,and stacked graphene is obtained.It is expected that graphene with single atomic layer structure and high charge carrier mobility will solve the integrated circuits problem for hundred micron scale single crystal graphene with consistent lattice orientations.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2014年第6期103-109,共7页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(91123018 61172041 61172040)
关键词 石墨烯 纳米晶体管 集成电路 可控制备 双层搭叠 graphene nano-scale transistor integrated circuit controllable preparation stacking
作者简介 李昕(1968-),女,副教授 刘卫华(通信作者),男,副教授.
  • 相关文献

参考文献15

  • 1GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191.
  • 2LI Xuesong, MAGNUSON C W, VENUGOPAL A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper [J]. Journal of the American Chemical Society, 2011, 133(9): 2816-2819.
  • 3THANASIS G, RASHID J, GEIM A K, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics [J]. Nature Nanotechnology, 2013, 8(2): 100-103.
  • 4MOON J S, SEO H C, STRATAN F, et al. Lateral graphene heterostructure field-effect transistor [J]. IEEE Electron Device Letters, 2013, 34(9): 1190-1192.
  • 5BAEL S, KIM H. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nature Nanotechnology, 2010, 5(8): 574-578.
  • 6CHEN Jianyi, WEN Yugeng, GUO Yunlong, et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates [J]. Journal of the American Chemical Society, 2011, 133 (44): 17548-17551.
  • 7ELIAS D C, NAIR R R, MOHIUDDIN T, et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane [J]. Science, 2009, 323: 610-613.
  • 8LI Xuesong, CAI Weiwei, AN J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science, 2009, 324: 1312-1314.
  • 9HUA Baoshan, AGO H, ITO Y, et al. Epitaxial growth of large-area single-layer graphene over Cu(111)/sapphire by atmospheric pressure CVD [J]. Carbon, 2012, 50(1): 57-65.
  • 10MURARI R, MATTHEW F C, GYULA E, et al. The effect of growth parameters on the intrinsic properties of large-area single layer graphene grown by chemical vapor deposition on Cu [J]. Carbon, 2012, 50(1): 134-141.

二级参考文献30

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang 0, Zhang y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666.
  • 2Lu H Y, Wang Q H 2008 Chin. Phys. Lett. 25 3746.
  • 3Hu S J, Du Wei, Zhang G P, Gao M, Lu Z Y, Wang X Q 2012 Chin. Phys. Lett. 29057201.
  • 4Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature (London) 438 201.
  • 5Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S 2008 Nano Lett. 8 3498.
  • 6徐跃杭,国云川,吴韵秋,徐锐敏,延波2012物理学报61010701.
  • 7Bunch J S, Yaish Y, Brink M, Bolotin K, McEuen P L 2005 Nano Lett. 5287.
  • 8Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294.
  • 9Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97187401.
  • 10Zhao W J, Tan P H, Liu J, Ferrari A C 2011 J. Am. Chern. Soc. 133 5941.

共引文献48

同被引文献36

  • 1牛蒙年.半导体场效应型气体传感器的研究现状与未来[J].传感器技术,1993(3):6-11. 被引量:2
  • 2李海雁,窦菊英.腐蚀阴极尖端的新方法[J].真空电子技术,2004,17(6):59-61. 被引量:2
  • 3PEREIRA V M,DOSSANTOS J M B L,NETO A C.Modeling disorder in graphene[J].Physical Review:B,2008,77(11):115109.
  • 4FASOLINO A,LOS J,KATSNELSON M I.Intrinsic ripples in graphene[J].Nature Materials,2007,6(11):858-861.
  • 5NAKADA K,FUJITA M,DRESSELHAUS G,et al.Edge state in graphene ribbons:nanometer size effect and edge shape dependence[J].Physical Review:B,1996,54(24):17954-17961.
  • 6HUANG B,LI Z,LIU Z,et al.Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor[J].The Journal of Physical Chemistry:C,2008,112(35):13442-13446.
  • 7LU G,OCOLA L E,CHEN J.Gas detection using low-temperature reduced graphene oxide sheets[J].Applied Physics Letters,2009,94(8):083111.
  • 8XUE Y Q,DATTA S,RATNER M A.First-principles based matrix Green's function approach to molecular electronic devices:general formalism[J].Chemical Physics,2002,281(2/3):151-170.
  • 9ATACA C,AKTURK E,爦AHIN H,et al.Adsorption of carbon adatoms to graphene and its nanoribbons[J].Journal of Applied Physics,2011,109(1):013704.
  • 10REICH S,MAULTZSCH J,THOMSEN C,et al.Tight-binding description of graphene[J].Physical Review:B,2002,66(3):035412.

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部