期刊文献+

概率图模型学习技术研究进展 被引量:23

Learning Technique of Probabilistic Graphical Models: a Review
在线阅读 下载PDF
导出
摘要 概率图模型能有效处理不确定性推理,从样本数据中准确高效地学习概率图模型是其在实际应用中的关键问题.概率图模型的表示由参数和结构两部分组成,其学习算法也相应分为参数学习与结构学习.本文详细介绍了基于概率图模型网络的参数学习与结构学习算法,并根据数据集是否完备而分别讨论各种情况下的参数学习算法,还针对结构学习算法特点的不同把结构学习算法归纳为基于约束的学习、基于评分搜索的学习、混合学习、动态规划结构学习、模型平均结构学习和不完备数据集的结构学习.并总结了马尔科夫网络的参数学习与结构学习算法.最后指出了概率图模型学习的开放性问题以及进一步的研究方向. Probabilistic graphical models are powerful techniques to deal with uncertainty inference efficiently, and learning probabilistic graphical models exactly and efficiently from data is the core problem to be solved for the application of graphical models. Since the representation of graphical models is composed of parameters and structure, their learning algorithms are divided into parameters learning and structure learning. In this paper, the parameters and structure learning algorithms of probabilistic graphical models are reviewed. In parameters learning, the dataset is complete or not is also considered. Structure learning algorithms are categorized into six principal classes according to their different characteristics. The parameters and structure learning of Markov networks are also presented. Finally, the open problems and a discussion of the future trend of probabilistic graphical models are given.
出处 《自动化学报》 EI CSCD 北大核心 2014年第6期1025-1044,共20页 Acta Automatica Sinica
基金 国家重点基础研究发展计划(973计划)(2012CB720500) 国家自然科学基金(21006127) 中国石油大学(北京)基础学科研究基金(JCXK-2011-07)资助~~
关键词 概率图模型 贝叶斯网络 马尔科夫网络 参数学习 结构学习 不完备数据集 Probabilistic graphical models, Bayesian network, Markov network, parameter learning, structure learning, incomplete dataset
作者简介 刘建伟博士,中国石油大学(北京)副研究员.主要研究方向为智能信息处理.机器学习,复杂系统分析,预测与控制.算法分析与设计.本文通信作者.E—mail:liujw@cup.edu.cn 黎海恩中国石油大学(北京)地球物理与信息工程学院硕士研究生.主要研究方向为机器学习,概率图模型表示、学习和推理.E—mail:lihaien1988@163.com. 罗雄麟博士,中国石油大学(北京)教授.主要研究方向为智能控制和复杂系统分析,预测与控制.E—mail:luoxl@cup.edu.cn
  • 相关文献

参考文献181

  • 1Koller D, Firedman N. Probabilistic Graphical Models: Principles and Techniques. Cambridge: The MIT Press, 2009.
  • 2Wainsright M J, Jordan M I. Graphical models, exponential families, and variational inference. Foundations and Trends? in Machine Learning, 2008, 1(1-2): 1-305.
  • 3Pourret O, Naim P, Marcot B. Bayesian Networks: A Practical Guide to Applications. Chichester: John Wiley, 2008.
  • 4Larrnaga P, Moral S. Probabilistic graphical models in artificial intelligence. Applied Soft Computing, 2011, 11(2): 1511-1528.
  • 5Weber P, Medina-Oliva G, Simon C, Iung B. Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Engineering Applications of Artificial Intelligence, 2012, 25(4): 671-682.
  • 6Korb K B, Nicholson A E. Bayesian Artificial Intelligence (2nd edition). Florida: CRC Press, 2010.
  • 7Elvira Consortium. Elvira: an environment for probabilistic graphical models. In: Proceedings of the 1st European Workshop in Probabilistic Graphical Models. Cuenca, Spain, 2002. 222-230.
  • 8Cheng J, Greiner R. Learning Bayesian belief network classifiers: algorithms and system. In: Proceedings of the 14th Biennial Conference of the Canadian Society for Computational Studies of Intelligence. Ottawa, Canada: Springer, 2002. 141-151.
  • 9Murphy K. The Bayes net toolbox for Matlab. Computing Science and Statistics, 2001, 33(2): 1024-1034.
  • 10Spiegelhalter D, Thomas A, Best N, Gilks W. BUGS 0. 5: Bayesian Inference Using Gibbs Sampling Manual (version ii), Technical Report, MRC Biostatistics Unit, Institute of Public Health, Cambridge, UK. 1996.

同被引文献165

引证文献23

二级引证文献330

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部