期刊文献+

基于遗传优化LMBP算法的变形分析与预报

Deformation Analysis and Prediction Based on Genetic Optimization LMBP Algorithm
在线阅读 下载PDF
导出
摘要 本文针对传统BP神经网络存在收敛速度慢、计算量大、易收敛于局部最小点的缺点,引入遗传算法与LM算法优化BP神经网络,并对优化后的BP神经网络进行训练与预测。实验结果表明:优化后的模型具有训练速度快、预测精度高的特点,更适用于大坝的实时预报。 Traditional BP neural network has disadvantages of slow convergence speed,large computing capacity and easy converge on local minimum point in the paper.Genetic algorithms and LM algorithm optimization BP neural network are introduced.The optimized BP neural network is trained and predicted.Experimental results show that the optimized model is characterized by rapid training speed and high forecast accuracy,which is more suitable for real-time forecasting of the dam.
出处 《中国水能及电气化》 2014年第5期54-58,共5页 China Water Power & Electrification
关键词 遗传算法 BP神经网络 LM算法 变形监测 genetic algorithm BP neural network LM algorithm deformation monitoring
  • 相关文献

参考文献6

二级参考文献33

  • 1吴建发,赵金洲,郭建春.改进的模糊神经网络优选压裂井[J].石油工业计算机应用,2006,14(1):19-21. 被引量:6
  • 2翁静君,华锡生.改进的BP神经网络在大坝安全监控中的应用[J].水电自动化与大坝监测,2006,30(4):62-65. 被引量:14
  • 3李庆扬 王能超.数值分析[M].武汉:华中理工大学出版社,1982..
  • 4焦李成.神经网络系统理论[M].西安:西安电子科技大学出版社,1992..
  • 5[3]Kennecly M,Pchua L O. Neural networks for nonlinear programming[J]. IEE E,Trans,Circuits,1988,35:554-562.
  • 6[4]Aribshahi P. Fuzzy control of backpropagation[A]. IEEE Fuzzy’96,1996.96 7-972.
  • 7[5]Derrick H,Widrow B. Neural networks for self-learning control system[J ]. IEEE Control Systems Mangzine,1990,4(1):18-23.
  • 8[6]Khalid M,Omatu S. A neural network based control scheme with an adaptive neural model reference structure[A]. IJCNN,Singapore,1991.2128-2133.
  • 9[7]Wilis N J. Artificial neural networks in process estimation and control[ J]. Automatica,1992,28:1181-1187.
  • 10[8]Luo Li,Luo Qiang,Hu Shouren. A high-speed learning algorithm for BP ne ural networks[A]. International Conference on Neural Networks and Signal Proce ssing(Vol.1)[C]. ICNNSP’95, Nanjing,1995.202-205.

共引文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部