期刊文献+

Nonlinear Dynamics of Rayleigh Taylor Instabilities Studied with a Lattice Boltzmann Method

Nonlinear Dynamics of Rayleigh Taylor Instabilities Studied with a Lattice Boltzmann Method
在线阅读 下载PDF
导出
摘要 Multi-relaxation time lattice Boltzmann method is employed to study the later stages of Rayleigh Taylor instabilities. A heavy fluid is placed over an immiscible lighter fluid in an unstable equilibrium. Various initial disturbances are used to initiate the flow. The D2Q9 lattice arrangement is employed on the computational domain. The density distribution function is determined for both fluids, and a coloring function is used to highlight the two fluids. Interactive forces and body forces are modelled by using the Shah and Chert model. Three different initial disturbances are studied, and their late stages are examined. The classic mushroom structure can be seen on all three cases. Distortions of the mushroom structures are seen due to the effects of the boundary and the influence of the initial disturbance.
出处 《Journal of Mechanics Engineering and Automation》 2014年第5期365-371,共7页 机械工程与自动化(英文版)
关键词 Lattice Boltzmann multi-relaxation time Rayleigh Taylor instability. 格子玻尔兹曼方法 不稳定性 非线性动力学 泰勒 瑞利 密度分布函数 初始扰动 伞形结构
作者简介 Corresponding author: Dennis E. Oztekin, Ph. D. student, research fields: statistical mechanics and continuum mechanics. E-mail: deo308@lehigh.edu.
  • 相关文献

参考文献14

  • 1M. Cheng. J. tlua. J. Lou. Simulation of bubble-bubble interaction using a lattice boltzmann method. Computers & Fluid 39 (2010) 260-270.
  • 2S. Chen, G.D. Doolen, Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1998) 329-364.
  • 3S.J. Almalowi, D.E. Oztekin, A. Oztekin, Rayleigh-Taylor instability studied with multi-relaxation lattice Boltzmann method, in: ASME 2013 International Mechanical Engineering Congress and Exposition. California, Nov. 15-21, 2013.
  • 4P.L. Bhatnagar, E,P. Gross, M. Krook, A model lbr collision processes in Gases. 1. Small amplitude processes in charged and neutral one-component systems, Physical Review 94 (3) (1954) 511-525.
  • 5S. Succi. The Lattice Boltzmann Equation lbr Fluid Dynamics and Beyond, Oxford Science Publications. UK. 2001.
  • 6S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases, Digital Edition, Cambridge Mathematical Library. UK, 1999.
  • 7X. He, L. Luo. Lattice Boltzmann model tbr the incompressible Navier-Stokes equation. Journal of Statistical Physics 88 (3) (1997) 927-944.
  • 8S. Hou, X. Shan, Q. Zou. G. Doolen. W.E. Soil, Evaluation of two lattices Boltzmann models for multiphase flows, Journal of Computational Physics 138 (1997) 695-713.
  • 9X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components. Physical Reviev E. 47 (3) (1993) 1815-1819.
  • 10H. Huang. Z. Li. S. Lui. Z. Lu. Shan-and-Chen-type multiphase lattice Boltzmann study of viscous coupling effects lbr tvo-phase flov in porous media. International Journal for Numerical Methods in Fluids 61 (2009) 341-354.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部