期刊文献+

锐钛矿型TiO_2纳米管的离子液体辅助水热合成及紫外光催化活性 被引量:6

Ionic Liquid-assisted Synthesis of Anatase TiO_2 Nanotubes and Their UV Light Photocatalytic Activities
在线阅读 下载PDF
导出
摘要 在离子液体[Bmim]OH辅助的水热条件下合成了结晶度较好的偏钛酸纳米管,经470℃煅烧2 h,可转变为锐钛矿型TiO2纳米管.对产物的物相、形貌和比表面积等进行了表征.结果表明,锐钛矿型TiO2纳米管的比表面积约为355 m2/g,主孔径约为25 nm.锐钛矿型TiO2纳米管和偏钛酸纳米管均呈现出明显的紫外光催化降解对氯苯酚的活性,锐钛矿型TiO2纳米管的降解效率约为44%(1 h).离子液体的加入不仅可扩大水热合成的温度范围,且有助于提高偏钛酸纳米管的结晶度. Hydrogen titanate nanotubes with high crystallinity were prepared under the ionic liquid [ Bmim] OH-assisted hydrothermal conditions and then converted into anatase TiO2 nanotubes by calcination at 470 ℃ for 2 h. The phases, morphologies and specific surface areas of the resulting samples were investigated by means of powder X-ray diffraction(XRD), transmission electron microscopy(TEM), Raman spectroscopy and Brunauer-Emmett-Teller( BET) surface area analysis. The results indicated that the specific surface area and the pore size of anatase TiO2 nanotubes were ca. 355 m2/g and 25 nm, respectively. Both anatase TiO2 nanotubes and hydrogen titanate nanotubes exhibited high UV-light-driven photocatalytic degradation activity of parachlorophenol. The photodegradation efficiency of parachlorophenol reached 44% by anatase TiO2 nano-tubes, in 1 h of reaction. The introduction of ionic liquid could not only enlarge the temperature range of hy-drothermal synthesis, but also benefit for improving the crystallinity of hydrogen titanate nanotubes.
出处 《高等学校化学学报》 SCIE EI CAS CSCD 北大核心 2014年第5期934-940,共7页 Chemical Journal of Chinese Universities
基金 国家自然科学基金(批准号:21073095 21371101) 国家'111'计划项目(批准号:B12015)资助~~
关键词 锐钛矿 TiO2 纳米管 离子液体 水热合成 Anatase TiO2 nanotubes Ionic liquid Hydrothermal synthesis
作者简介 联系人简介:郑文君,男,博士,教授,博士生导师,主要从事无机合成与材料化学研究.E—mail:zhwj@nankai.edu.cn
  • 相关文献

参考文献40

  • 1Fujishima A. , Honda A. , Nature, 1972, 238, 37-38.
  • 2Khan S. , A1-Shahry M. , Ingler W. B. , Science, 2002, 297, 2243-2245.
  • 3Antonelli D. M. , Ying J. Y. , Angew. Chem. Int. Ed. , 1995, 34, 2014-2019.
  • 4Lakshmi B. B. , Dorhout P. K. , Martin C. R. , Chem. Mater. , 1997, 9(3): 857-865.
  • 5Kasuga T., Hiramatsu M., Hoson A., Sekino T., Niihara K., Langmuir, 1998, 14(12): 3160-3163.
  • 6Zwilling V. , Aucouturier M. , Darque-Ceretti E. , Electrochim. Acta, 1999, 45(6): 921-929.
  • 7Morgado Jr E. , Jardim P. M. , Marinkovic B. A. , Rizzo F. C. , de Abreu M. A. S. , Zotin J. L. , Aratijo A. S. , Nanotechnol. , 2007, 18, 495710.
  • 8Thome A. , Kruth A. , Tunstall D. , Irvine J. T. S. , Zhou W. Z. , J. Phys. Chem. B, 2005, 109, 5439-5444.
  • 9Quan x. , Yang S. , Ruan X. , Zhao H. , Environmental Science & Technology, 2005, 39, 3770-3775.
  • 10Zhang Z. H. , Yuan Y. , Shi G. Y. , Fang Y. J. , Liang L. H. , Ding H. C. , Jin L. T. , Environmental Science & Technology, 2007, 41_ 6259-6263.

二级参考文献45

  • 1XU Ru-Ren(徐如人),PANG Wen-Qin (庞文琴).Inorganic Synthesis and Preparation Chemistry (无机合成与制备化学)[M] ,Beijing; Higher Education Press,2001:128-131.
  • 2Zhang L.,Chen D.R.,Jiao X.L..J.Phys.Chem.B[J] ,2006,110(6):2668-2673.
  • 3Ren L.,Jin L.,Wang J.B.,Yang F.,Qiu M.Q.,Yu Y..Nanotech.[J] ,2009,20:115603-115611.
  • 4Yang S.F.,Popov A.,Dunsch L..J.Phys.Chem.C[J] ,2007,111(37):13659-13664.
  • 5Zhou L.,Wang W..Cryst.Growth & Des.[J] ,2008,8(10):3595-3601.
  • 6Su J.,Guo L.,Yoriya S..Cryst.Growth & Des.[J] ,2010,10(2):856-861.
  • 7Zhou M.,Zhang S.D.,Sun Y.F.,Wu C.Z.,Wang M.T.,Xie Y..Chem.Asian J.[J] ,2010,5(12):2515-2523.
  • 8Zhao Y.,Xie Y.,Zhu X.,Yan S.,Wang S.X..Chem.Eur.J.[J] ,2008,14(5):1601-1606.
  • 9Vemardou D.,Spanakis E.,Kenanakis G..Mater.Chem.& Phys.[J] ,2010,124:319-325.
  • 10Kudo A.,Omori K.,Kato H..J.Am.Chem.Soc.[J] ,1999,121(49):11459-11467.

共引文献38

同被引文献61

引证文献6

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部