期刊文献+

MNP模型参数估计实用方法及其在出行方式预测中的应用 被引量:2

Practical Method of MNP Model Parameter Estimation and Its Application to Forecast of Trip Mode Choice
在线阅读 下载PDF
导出
摘要 鉴于SML-GHK方法估计MNP模型参数具有初值敏感性,提出了一种初值点确定与参数估计的实用方法。首先应用贝叶斯方法估计MNP模型参数的初值,再结合基于GHK的模拟极大似然方法估计MNP模型参数,并通过实际算例对该方法进行了验证。结果表明:文中方法实用有效,特别是在小样本情况下效果明显;将基于该方法得到的参数值用于预测,能够较好地再现实际交通分担率;文中方法能够帮助规划师探讨某些交通政策变化时全体出行者对各种出行方式的选择概率的变化. As estimating MNP model parameters using the SML-GHK method is sensitive to the initial values,a practical method for initial value determination and parameter estimation is proposed.It uses the Bayesian approach to define the initial values of MNP model parameters,and adopts the simulated maximum likelihood based on GHK framework to estimate the MNP model parameters.Then,a case study is performed to verify the effectiveness of the proposed method.The results show that (1 )the proposed method is applicable and effective,especially for small-scale samples;(2)using parameters defined by the proposed approach,better trip mode share forecast results can be achieved ;and (3 )it is a useful tool for transport planners to exam the probability variations of trip mode choice resulted by transport policy changes.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第2期103-108,138,共7页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(51108192 51378222)
关键词 MNP模型 参数估计 模拟极大似然 BAYES方法 GHK算法 MNP model parameter estimation simulated maximum likelihood Bayesian approach GHK algo-rithm
作者简介 俞礼军(1972-),男,博士,副教授,主要从事交通运输规划与设计方法研究.E-mail:yulijun@scut.edu.cn
  • 相关文献

参考文献11

  • 1Moshe Ben-Akiva, Steven R Lerman. Discrete choice anal- ysis : theory and application to travel demand [ M ]. Massa- chusetts : The MIT Press, 1983.
  • 2Domencich Tom, McFadden L Daniel. Urban travel de- mand : a behavioral analysis [ M ]. Amsterdam : North-Hol- land Publishing Company, 1975.
  • 3Carlos F Daganzo. Multinomial probit:the theory and Its application to demand forecasting [ M ]. New York : Aca- demic Press, 1979.
  • 4Kenneth E Train. Discrete choice methods with simulation [ M]. Massachusetts : Cambridge University Press,2009.
  • 5Juan de Dios Ortfizar, Luis G Willumsen. Modelling trans- port [ M ]. 4th ed. London :John Wiley & Sons, Ltd,2011.
  • 6Hajivassiliou Vassilis, McFadden Daniel, Ruud Paul. Sim- ulation of multivariate normal rectangle probabilities: methods and programs [ J ]. Journal of Econometrics, 1996,72( 1 ) :85-134.
  • 7MeCulloeh E Robert, Rossi E Peter. An exact likelihood a- nalysis of the multinomial probit model [J ]. Journal of E- conometrics, 1994,64( 1 ) :207-240.
  • 8MeCulloeh E Robert, Poison G Nicholas, Rossi E Peter. A Bayesian analysis of the muhinomial probit model with fully identified parameters [ J ], Journal of Econometrics, 2000,99( 1 ) : 173-193.
  • 9David A van Dyk,Kosuke lmai. A Bayesian analysis of the multinomial probit model using marginal data augmenta- tion [ J ]. Journal of Econometrics, 2005,124 ( 2 ) : 311- 334.
  • 10Erik V Nordheim. The trace restriction: an alternative identification strategy for the Bayesian multinomial probit model [J]. Journal of Business & Economic Sta- tistics ,2012,30( 3 ) :404-410.

同被引文献11

  • 1Zhou R G, Horrey W J. Predicting adolescent pedestrians' behavioral intentions to follow the masses in risky crossing situations [ J ]. Transportation Research Part F, 2010,13 (4) :153-163.
  • 2Santor D A, Messervey D, Kusumakar V. Measuring peer pressure, popularity, and conformity in adolescent boys and girls : predicting school performance, sexual attitudes, and substance abuse [ J 1. Youth and Adolescence,2000, 29(2) : 163-182.
  • 3McGhie A, LewisI, Hyde M K. The influence of conformity and group identity on drink walking intentions:comparing intentions to drink walk across risky pedestrian crossing scenarios [J]. Accident Analysis and Prevention, 2012, 45( 1 ) :639-645.
  • 4Rosenbloom T. Crossing at a red light:behaviour of indi- viduals and groups [ J ]. Transportation Research, Part F, 2009,55 (4) :389-394.
  • 5Zhuang X, Wu C. Pedestrians' crossing behaviors and safety at unmarked roadway in China [ J ]. Accident Ana- lysis and Prevention, 2011,31 ( 7 ) : 1927-1936.
  • 6Daisuke Fukuda, Shigeru Morichi. Incorporating aggregate behavior in an individual' s discrete choice: an application to analyzing illegal bicycle parking behavior [ J ]. Trans- portation Research,Part A,2007,14(5) :313-325.
  • 7Brock W, Durlauf S. Discrete choice with social interac- tions [ J ]. Review of Economic Studies, 2001,68 ( 9 ) : 235-260.
  • 8翁小雄,黄德剑,黎升福.公共建筑行人交通仿真性能分析[J].华南理工大学学报(自然科学版),2012,40(2):45-49. 被引量:3
  • 9陈坚,晏启鹏,杨飞,胡骥.出行方式选择行为的SEM-Logit整合模型[J].华南理工大学学报(自然科学版),2013,41(2):51-57. 被引量:51
  • 10王子甲,陈峰,施仲衡.基于Agent的社会力模型实现及地铁通道行人仿真[J].华南理工大学学报(自然科学版),2013,41(4):90-95. 被引量:13

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部