摘要
拼接是图像篡改过程中最普遍使用的操作,通过检测拼接可以有效鉴别图像是否经过人为修改。针对拼接操作提出了一种盲检测方法:首先对图像进行小波变换,在比较分析不同小波子带对图像拼接检测的作用后,选取高频子带作为图像变换域信息;接着对小波子带进行差分操作,并将系数取整阈值化后作为马尔可夫状态;最后计算状态间的转移概率作为拼接特征,利用支持向量机(SVM)进行分类。在哥伦比亚图像拼接评测彩色库和灰度库上分别进行实验,证实了选取小波高频子带提取拼接特征的有效性。通过与其他特征提取方法对比,所提出特征在两个评测库上都表现出了更好的检测效果,尤其在彩色评测库上取得了94.6%的识别率。
Splicing is the most universal image tampering operation, detection of which is effective for identifying image tamper. A blind splicing detection method was proposed. The method firstly analyzed the effects of different sub-bands on image splicing detection according to features of wavelet transform. High frequency sub-band was verified to be more appropriate for splicing detection both from theory analysis and experiment results. Secondly, the method conducted difference operation, rounded and made threshold to the coefficients as discrete Markov states, and calculated the state transition probabilities as splicing features. Finally, Support Vector Machine (SVM) was used as classifier, and the features were tested on Columbia image splicing detection evaluation datasets. The experimental results show that the proposed method performs better compared with other features and achieves a detection accuracy rate of 94.6% on the color dataset specially.
出处
《计算机应用》
CSCD
北大核心
2014年第5期1477-1481,共5页
journal of Computer Applications
基金
国家自然科学基金资助项目(61271316
61071152)
国家973计划项目(2010CB731403
2010CB731406
2013CB329605)
"十二五"国家科技支撑计划项目(2012BAH38 B04)
关键词
离散小波变换
马尔可夫链
转移概率
支持向量机
图像拼接检测
Discrete Wavelet Transform (DWT)
Markov chain
transition probability
Support Vector Machine (SVM)
image splicing detection
作者简介
袁全桥(1988-),男,河南南阳人,硕士研究生,主要研究方向:数字图像防伪;
(通信作者电子邮箱shli@sjtu.edu.cn)苏波(1972-),男,上海人,副教授,博士研究生,主要研究方向:信息内容安全、安全管理;
赵旭东(1981-),男,江苏徐州人,博士研究生,主要研究方向:数字图像取证、图像处理;
李生红(1971-),男,上海人,教授,博士,主要研究方向:信息内容、信号处理、模式识别。