期刊文献+

一种时频域加权张量分解的欠定盲源分离方法

A Weighted Tensor Decomposition Of Underdetermined Blind Separation Method In Time-Frequency
在线阅读 下载PDF
导出
摘要 针对欠定瞬时混合模型,提出了一种基于时频域加权张量分解的欠定盲源分离方法。该算法利用短时傅立叶二次分布无交叉项及Wigner-Ville分布高分辨率的特性,在传统最小二乘代价函数基础上对WVD自由项时频点所构成张量进行加权调整,解决可能存在的数据丢失问题,同时施加Tikhonov准则处理由二次分布的边缘聚集性所引起的负值,采用LM算法最小化代价函数估计出混合矩阵,实现源信号的有效分离。 A new time-fi'equency approach to the tmderdetermined blind source separation was proposed based on the instanta- neous mixture model. The algorithm takes advantages of the characteristics of no cross-terms in STFT and high TF resolution in WVD. Based on the least square cost function, we use a modified weighted tensor constituted by auto-terms TF points to handle the possibility of missing values and deal with the negative values which may be caused by quadratic distribution marginal integration. Fi- nally, we minimized the cost function by LM algorithm to estimate the mixture matrix and separate the source signals effectively.
出处 《激光杂志》 CAS CSCD 北大核心 2014年第4期20-22,共3页 Laser Journal
基金 国家自然科学基金(NO.61163066 NO.60902074)
关键词 欠定盲分离 时频分析 Tikhonov准则 加权张量分解 Underdetermined Blind Source Separation Time-Frequency Analysis Rule of Tikhonov Weighted tensor decompo-sition
作者简介 张明君(1986-),女,2011级硕士研究生,主要研究方向为盲信号处理,信息安全. 通讯作者:郭文强(1975.),男,博士,教授,主要研究领域为人工智能,信息安全.
  • 相关文献

参考文献16

  • 1De Lathauwer and J. Castaing, "Blind identification of under- determined mixtures by simultaneous matrix dia-gonaliza- tion,'IEEE Trans [J] .Signal Process,2008,56(3): 1096-1105.
  • 2He Z, Cichocki A, Zdtmek R, Xie S. Improved FOCUSS methodwith conjugate gradient iteration.,kq].lEEE Tran-s Signal Process.2009,57:399-404.
  • 3Lin J G,Lin Q H,Gong X F.A semi-blind ncgcntropymaxi- mization algorithm for enhancing a specific speech [C]. The Seventh International Conference onNatural Conaputa- tion [J]. Shanghai,2011,16401-405L.
  • 4谢胜利,孙功宪,肖明,傅予力,吕俊.欠定和非完全稀疏性的盲信号提取[J].电子学报,2010,38(5):1028-1031. 被引量:23
  • 5Frederic Abrard, Yannick Deville.A time - frequency blind signal separation method applicable to underdeterm-ined mixtures of dependent sources [J]. Signal Processing ,2005, 85:1389-1403.
  • 6Tiehavsky P, Yeredor A. Fast approximate joint diagonaliza- tion incorporating weight matrices [J]. IEEE Trans actions on Signal Processing, 2009, 57(3): 878-891.
  • 7S.Kim and C.D.Yoo," Underdetermind blind source separa- tion based on subspace representation [J]. " IEEE Trans. Signal Process.,vol.57,no.7,pp.2604-2614,Jul.2009.
  • 8M. Pedersen, D. Wang, J. Larsen, and U. Kjems, "Two-mi- crophone separation of speech mixtures [J]. IEEE Tra -ns . Neural Netw, 2008,19(3):475-492.
  • 9D. Peng and Y. Xiang, "Underdetermined blind separation of non-sparse sources using spatial time-frequency distribu- tions [J]. " Dig. Signal Process,2010,20(2):581-596.
  • 10D. Peng and Y. Xiang, "Underdetermined blind source separation based on relaxed sparsity condition of sourc -es, [J]. "IEEE Trans. Signal Process,2009,57(2):809-814.

二级参考文献3

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部