期刊文献+

基于图的半监督降维算法 被引量:2

Graph-based Semi-supervised Dimensionality Reduction Algorithm
在线阅读 下载PDF
导出
摘要 非线性降维和半监督学习都是近年来机器学习的热点。将半监督的方法运用到非线性降维中,提出了基于图的半监督降维的算法。该算法用等式融合的方法推出了标记传播算法的另一种表达形式,用标记传播的结果作为初始的数据映射,然后在图谱张成的线性空间中寻找最逼近初始映射的数据作为最后的半监督降维的结果。实验表明,所提算法可以获得平滑的数据映射,更接近于理想的降维效果。与标记传播算法、图谱逼近算法、无监督的降维算法的比较也体现出本算法的优越性。 Nonlinear dimensionality reduction and semi-supervised learning are both hot issues in machine learning area.Based on semi-supervised method,the article solved nonlinear dimensionality reduction problem to make up for the shortfall of ordinary methods.By using integration of equalities,a novel expression of label propagation algorithm was proposed.We used the label propagation result as the initial value mapping,and then found the best approximation to it in the graph spectral space.The experiment shows that our semi-supervised dimensionality reduction method can achieve smooth data mapping that is closer to the ideal effect.
出处 《计算机科学》 CSCD 北大核心 2014年第4期280-282,296,共4页 Computer Science
基金 国家科技支撑计划课题(2012BAD35B07) 湖南省教育厅优秀青年项目(12B023)资助
关键词 半监督学习 流形学习 标记传播 图谱理论 Semi-supervised learning Manifold learning Label propagation Spectral graph theory
作者简介 杨格兰(1975-),男,硕士,副教授,主要研究方向为机器学习、模式识别,E-mail:glyang@mail.ustc.edu.cn 孟令中(1981-),男,博士,主要研究方向为软件可信性、软件测试.
  • 相关文献

参考文献15

  • 1van der M L J P,Postma E O,van den Herik H J.Dimensionality reduction:A comparative review[J].Journal of Machine Learning Research,2007 (1).
  • 2Tenenbaum J B,de S V,Langford J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,290,2000:2319-2323.
  • 3Roweis S T,Saul L K.Nonlinear dimensionality reduction by loeally linear embedding[J].Science,2000,290:2323-2326.
  • 4Belkin M,Niyogi P.Laplacian eigenmaps for dimensionality reduction and data representation[J].Neural Computation,2003,15(1):1373-1396.
  • 5Brans M M.Charting a manifold[C] // Neural Information Proceeding Systems:Natural and Synthetic.Vancouver,Canada,2000:232-245.
  • 6Zhang Zhen-yue,Zha Hong-yuan.Linear low-rank approximations and nonlinear dimensionnlity reduction[J].Science in Chins Series A-Mathematics,2005,35 (3):273-285.
  • 7Yan S C,Xu D,Zhang B,et al.Graph embedding and extensions:A general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (1):40-51.
  • 8Zhu Xiao-jin,Ghahrsmani Z.Learning from labeled and unlabeled data with label propagation[R].Technical Report 02-107,CMU-CALD.USA:Carnegie Mellon University,2002.
  • 9Zhu Xiao-jin,Lafferty J,Ghahrsmani Z.Semi-Supervised Learning:From Gaussian Fields to Gaussian Processes[R].CMU.Technical Report,CMU-CS-03-175.USA:Carnegie Mellon University,2003.
  • 10Pothen,Mex,Fan C-J.Computing the Block Triangular Form of a Sparse Matrix[J].ACM Transactions on Mathemstical Software,1990,16(4):303-324.

二级参考文献53

  • 1胡佳妮,徐蔚然,郭军,邓伟洪.中文文本分类中的特征选择算法研究[J].光通信研究,2005(3):44-46. 被引量:47
  • 2李业丽,秦臻.一种改进的k-means算法[J].北京印刷学院学报,2007,15(2):63-65. 被引量:9
  • 3袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:157
  • 4Zhou Yong,Li You-wen,and Xia Shi-xiong.An improved KNN text classification algorithm based on clustering.Journal of Computers,2009,4(3):230-237.
  • 5Fuknshima Tamon,Yamamori Kunihito,and Yushihara Ikuo,et al..Feature extraction of protein expression levels based on classification of functional foods with SOM.Artificial Life and Robotics,2009,13(2):543-546.
  • 6Park Cheong-hee and Lee Moonhwi.A SVM-based discretization method with application to associative classification.Expert Systems with Applications,2009,36(3):4784-4787.
  • 7Zhang Yong,Ren Yong-gong,and Zhang Zai-yue,et al..Fuzzy SVDD classifier with positive and negative samples,Journal of Computational Information Systems,2008,4(3):1055-1062.
  • 8Tenenbaum J B,Silva V,and Langford J C.A global geometric framework for nonlinear dimensionality reduction.Science,2000,290(5500):2319-2323.
  • 9Roweis S T and Saul L K.Nonlinear dimensionality reduction by locally linear embedding.Science,2000,290(5500):2323-2326.
  • 10Belkin M and Niyogl P.Laplacian eigenmaps for dimensionality reduction and data representation.Neural Computation,2003,15(6):1373-1396.

共引文献23

同被引文献21

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部