期刊文献+

两类螺形映照扩充子族的偏差上界估计 被引量:3

The Distortion Upper Bound for Two Subclasses of Spirallike Mappings
原文传递
导出
摘要 偏差估计一直是多复变函数论的研究热点之一.但目前螺形映照扩充子族的偏差估计的研究成果还较少.针对这一问题,研究了复向量空间C_n中开单位球B_n,复Banach空间中单位球B和域Ω_(p_1,…,p_n)上一类α次β型,α次强β型螺形映照的偏差估计问题.利用不等式、矩阵及两类映照的增长定理等方法,获得了上述域上的两种映照的偏差上界估计,所得结果推广了一些已知的结论. Distortion estimations have been one of the focuses of the theory of several com- plex variables functions, But now the distortion estimations on some subclasses of spirallike mappings are less.Aiming this issue, This paper researched the distortion estimation of almost spirallike mapping of β and order α, strongly spirallike mapping of type β and order α on unit ball Bn in complex vector space Cn, unit ball B on complex Banach space and reinhard domain ΩP1,...,pn- By using the methods such as inequality, matrix and the growth and cover theorem of two classes spirallike mapping, we obtained the distortion upper bound on above several domains, and the results gerenalized some known conclusions.
出处 《数学的实践与认识》 CSCD 北大核心 2014年第6期241-246,共6页 Mathematics in Practice and Theory
基金 国家自然科学基金(11271359) 河南省计划项目(112300410251) 河南省教育厅科学技术研究重点项目(14B110015)
关键词 α次β型螺形映照 α次强β型螺形映照 增长定理 偏差上界 spirallike mappings of type βand order α strongly spirallike mappings of typeβ and order α growth theorem distortion upper bound
  • 相关文献

参考文献7

二级参考文献20

共引文献41

同被引文献16

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部