期刊文献+

Mather theory for piecewise smooth Lagrangian systems 被引量:1

Mather theory for piecewise smooth Lagrangian systems
原文传递
导出
摘要 We establish the Mather theory for a type of piecewise smooth and positive definite Lagrangian systems.It models a mechanical system subject to external impulsive forcing.We show the existence of the minimal measure and the Lipschitz property of Aubry set.In addition,the weak KAM solution to this kind of piecewise smooth Lagrangian is also established. We establish the Mather theory for a type of piecewise smooth and positive definite Lagrangian systems. It models a mechanical system subject to external impulsive forcing. We show the existence of the minimal measure and the Lipschitz property of Aubry set. In addition,the weak KAM solution to this kind of piecewise smooth Lagrangian is also established.
作者 ZHOU Min
出处 《Science China Mathematics》 SCIE 2014年第5期1033-1044,共12页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant Nos.11201222 and 11171146) Basic Research Program of Jiangsu Province(Grant No.BK2008013)
关键词 positive definite Lagrangian Mather theory piecewise smooth 拉格朗日系统 分段光滑 机械系统 度量和 正定
作者简介 Email: minzhou@nju.edu.cn
  • 相关文献

参考文献10

  • 1Bernard P, Contreras G. A generic property of families of lagrangian systems. Ann Math, 2008, 167:1099-1108.
  • 2Cheng C Q, Yan J. Existence of diffusion orbits in a priori unstable Hamiltonian systems. J Differ Geom, 2004, 67: 457-517.
  • 3Contreras G, Iturriaga R, Safichez-morgado H.Weak solutions of the Hamiltonian-Jacobi equation for time periodic Lagrangians. Preprint, 2001.
  • 4Fathi A. Weak KAM Theorem in Lagrangian Dynamics. Cambridge: Cambridge University Press, 2009.
  • 5Fathi A, Mather J. Failure of convergence of the Lax-Oleinik semi-group in the time-periodic case. Bull Soe Math Prance, 2000, 128:473-483.
  • 6Marle R. Generic properties and problems of minimizing measures of Lagrangian systems. Nonlinearity, 1996, 9: 273- 310.
  • 7Mather J. Action minimizing invariant measures for positive definite Lagrangian systems. Math Z, 1991, 207:169-207.
  • 8Mather J. Variational constuction of connecting orbits. Ann Inst Fourier, 1993, 43:1349- 1386.
  • 9Wang K, Yan J. A new kind of Lax-Oleinik type operator with parameters for time-periodic positive definite Lagrangian systems. Commun Math Phys, 2012, 309:663-691.
  • 10Zhou M. HSlder regularity of barrier functions in a priori unstable case. Math Res Lett, 2011, 18:77-94.

同被引文献20

  • 1KASS K, WITKIN A, TERZOPOULOS D.Snakes: active contour models[J].Int J Comput Vis, 8,1(4): 321-331.
  • 2OSHER S, SETHIAN J A.Fronts propagating with curvaturedependent speed: algorithms based on Hamilton-Jacobi formulations[J].J Comput Phys, 8,9(1):12-49.
  • 3SHI D, GUNN S R, DAMPER R I.Handwritten Chinese radical recognition using nonlinear active shape models[J].IEEE Trans.Pattern Analysis and Machine Intelligence, 3,5(2):277-280.
  • 4LIU G, LIN Z, YAN S, et al.Robust recovery of subspace structures by low-rank representation[J].IEEE Trans.Pattern Analysis and Machine Intelligence, 3,5(1):171-184.
  • 5VESE L, CHAN T.A multiphase level set framework for image segmentation using Mumford and Shah model[J].Int.J.Computer Vision, 2,0(3):271-293.
  • 6TSAI A, YEZZI A, WILLSKY A S.Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification[J].IEEE Trans Image Process, 1,0(8):1169-1186.
  • 7LI C, KAO C, GORE J, et al.Minimization of region-scalable fitting energy for image segmentation[J].IEEE Trans.Image Process, 8,7(10):1940-1949.
  • 8WANG X, HUANG D, XU H.An efficient local Chan-Vese model for image segmentation[J].Pattern Recognition, 0,3(3):603-618.
  • 9ZHANG K, SONG H, ZHANG L.Active contours driven by local image fitting energy[J].Pattern Recognition, 0,3(4):1199-1206.
  • 10CHEN Jinhui,YANG Jian.Robust subspace segmentation via low-rank representation[J].IEEE Trans on Cybernetics, 4,4(8):1432-1445.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部