期刊文献+

基于STM的三维荧光导数光谱法检测食品中黄曲霉素 被引量:7

Utilizing 3-D first-order derivative fluorescence spectrometry to detect aflatoxin in foods based on STM
原文传递
导出
摘要 基于支持张量机(STM)的三维荧光导数光谱定量分析方法,检测了食品中黄曲霉素。在计算三维荧光导数光谱时,将常规的、只适用于向量光谱数据的Savitzky-Golay方法扩展到由二阶张量描述的三维荧光光谱中。同时,应用了STM方法建立校正模型,对白酒和牛奶中的黄曲霉素进行了检测。在对白酒中的黄曲霉素检测中,复相关系数(CC)和预测误差均方根(RMSEP)分别为0.952 3和14.847 5,与常规的偏最小二乘(PLS)和支持向量机(SVM)方法相比,CC分别提高了2.40%和2.34%,RMSEP分别降低了8.92%和4.36%。在对牛奶中的黄曲霉素检测中,CC和RMSEP分别为0.996 5和5.448 9,与PLS和SVM的方法相比,RMSEP分别提高了0.40%和0.30%,RMSEP分别降低了18.31%和17.18%。检测结果表明,基于STM方法建立的校正模型要优于传统的SVM方法和PLS方法。 Spectral quantitative analysis for three-dimensional first-order derivative fluorescence based on support tensor machine (STM) is proposed and applied to detect aflatoxin in foods in this paper. The conventional Savitzky-Golay polynomial smoothing and differentiation methods, only used for vector- based spectral analysis, are extended to three-dimensional fluorescence spectrometry represented by 2-or- der tensors. Because the three-dimensional first-order derivative spectrometry is represented as a 3-order tenor, support tensor machines (STMs) are used to build calibration model in order to improve the mod- el prediction accuracy. In the experiments for detecting aflatoxin in liquor, the correlation coefficient (CC) and root mean square error of prediction (RMSEP) are 0, 952 3 and 14. 847 5 ,respectively,and compared with partial least squares ( PLS ) and support vector machine ( SVM ) method , the CC is increased by 2.34% and 2.40% while RMSEP is reduced by 4.36% and 8. 92%,respectively. And in the experi- ments for detecting aflatoxin in rffllk,CC and RMSEP are 0. 996 5 and 5. 448 9 ,and the CC is increased by 2.34% and 2.40% while RMSEP is reduced by 4. 36% and 8.92% ,respectively with comparison to PLS and SVM. These experimental results show that the performance of calibration model used by STM is superior to that by SVM and PLS.
出处 《光电子.激光》 EI CAS CSCD 北大核心 2014年第3期545-550,共6页 Journal of Optoelectronics·Laser
基金 国家自然科学基金(60974111) 国家"863计划"(2009AA04Z123)资助项目
关键词 检测 导数光谱 三维荧光 支持张量机(STM) 黄曲霉素 detection first-order derivative spectrometry three-dimensional (3D) fluorescence support tensor machine (STM) aflatoxin
作者简介 E-mail:shxdu@iipc.zju.edu.cn杜树新(1967-),男,浙江东阳人,博士,副教授,从事基于光谱分析的过程在线检测、模式识别与智能系统和机器学习等方面的研究
  • 相关文献

参考文献3

二级参考文献14

共引文献33

同被引文献62

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部