期刊文献+

一种改进的连续语音特征提取算法 被引量:1

Feature Extraction Algorithm of Improvement Continuous Speech
在线阅读 下载PDF
导出
摘要 本文介绍了连续语音识别中噪音鲁棒性方法的现状,分析传统动态范围调整方法在连续语音识别中导致的特征曲线中的峰值不匹配问题,提出了新的特征曲线调整算法,并为算法的参数设定增加了限制条件。本文详细地论述了算法的步骤以及算法中参数的确定。通过理论分析和实验验证,证明了提出的算法在连续语音特征调整中具有很好的性能,提高了识别精度。 The noise robust methods in continuous speech recognition is introduced, the peaks mismatching problem which exist in continuous speech feature adjustment by using conventional dynamic range adjustment is analyzed. The new feature adjustment algorithm is proposed and some restricted conditions to get parameters are added. The step and the parameter setting of the algorithm paper are discussed in details. By theoretical analysis and experimental verifica-tion, the performance of the algorithm in continuous speech feature adjustment is proved. The recognition accuracy is improved.
作者 刘葳 孙一鸣
出处 《长春理工大学学报(自然科学版)》 2014年第1期146-149,共4页 Journal of Changchun University of Science and Technology(Natural Science Edition)
关键词 连续语音识别 语音特征 动态范围调整 算法 continuous speech recognition speech feature dynamic range adjustment algorithm
作者简介 刘蒇(1980-),女,硕士,讲师,E—mail:liuwei@cust.edu.cn
  • 相关文献

参考文献5

二级参考文献46

  • 1Y.F.Gong.Speech recognition in noisy environments:A survey[J].Speech Communication,1995,16:261-291.
  • 2S.Boll.Suppression of acoustic noise in speech using spectral subtraction[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1979,27(2):113-120.In:Proceedings of IEEE International Conference on Acoustics,Acoustics and Signal Processing.
  • 3K.Paliwal and A.Basu.A speech enhancement method based on Kalman filtering[C]//Proceedings of 1987 IEEE International Conference on Acoustics,Acoustics and Signal Processing.Dallas,Texas,USA,1987:177-180.
  • 4Y.Ephraim and H.L.Van Trees.A signal subspace approach for speech enhancement[C]//Proceedings of 1993 IEEE International Conference on Acoustics,Acoustics and Signal Processing.Minneapolis,MN,USA,1993:355-358.
  • 5H.Lev-Ari,Y.Ephraim.Extension of the signal subspace speech enhancement approach to colored noise[J].IEEE Signal Processing Letters,2003,10(4):104-106.
  • 6S.Furui.Cepstral analysis technique for automatic speaker verification[J].IEEE Transactions on Acoustics,Speech and Signal Processing,1981,29(2):254-272.
  • 7O.Viikki and K.Laurila.Cepstral Domain Segmental Feature Vector Normalization for Noise Robust Speech Recognition[J].Speech Communication,1998,25:133-147.
  • 8A.de la Torre,A.M.Peinado,J.C.Segura et al.Histogram equalization of speech representation for robust speech recognition[J].IEEE Transactions on Acoustics,Speech and Signal Processing,2005,13(3):355-366.
  • 9S.H.Lin,Y.M.Yeh,and B.Chen.A Comparative Study of HEQ for Robust speech recognition[J].International Journal of Computational Linguistics and Chinese Language Processing,2007,12(2):217-238.
  • 10J.L.Gauvain and C.H.Lee.Maximum a posteriori estimation for multivariate Gaussian mixtureobservations of Markov chains[J].IEEE Transactions on Speech and Audio Processing,1994,2(2):291-298.

共引文献14

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部