期刊文献+

大型列车弓网系统优化建模与仿真分析 被引量:3

Large Electric Bow System Optimization Modeling and Simulation Analysis
在线阅读 下载PDF
导出
摘要 研究了电气化列车受电弓—接触网结构系统优化建模问题,分析了接触线预弛度对弓网受流的影响。传统的弓网模型多采用模态振型叠加法进行求解,过程比较繁琐,且容易引起截断误差。提出了一种基于Newmark算法的受电弓—接触网系统模型,将接触网看作一个刚度不断变化的系统,与受电弓系统联立,给出了弓网运动方程,并提出采用Newmark方法进行直接积分求解。使用ANSYS软件建立了弓网仿真模型,分析了预弛度对弓网受流质量的影响。仿真结果能够满足实际要求,可为接触网的设计提供参考。 This paper studied the optimization modeling of electric train pantograph-catenary structure system, and analyzed the effect of contact wire sag on bow net flow. The traditional bow net model uses modal superposition method to solve, the process is tedious, and easily causing truncation errors. This paper presented a system model of bow-catenary based on the Newmark algorithm. The model regarded catenary as a stiffness changing system, and was simultaneous with the pantograph system. The bow net movement equations were given, and the Newmark method was used to direct integral to solve. Using ANSYS software to form the simulation model of bow net, analyzing the effect of sag on the quality of the bow net by flow. The simulation results can satisfy the actual requirements, which provides a reference for the design of the catenary.
出处 《计算机仿真》 CSCD 北大核心 2014年第3期204-207,336,共5页 Computer Simulation
基金 国家高技术研究发展计划(863计划)(2011AA11A102)
关键词 受电弓 接触网 预驰度 受流质量 Pantograph Catenary Pre-sag Current-collecting quality
作者简介 杨康(1986-),男(汉族),河北石家庄人,硕士研究生,主要研究领域为弓网系统动力学; 陈唐龙(1962-),男(汉族),湖北荆州人,博士,教授.主要研究领域为接触网检测与控制和弓网系统动力学: 于龙(1980-),男(汉族),辽宁沈阳人,博士,副教授,主要研究领域为接触网检测与控制; 朱志增(1988-),男(汉族),河北邯郸人,硕士研究生,主要研究领域为弓网系统动力学。
  • 相关文献

参考文献9

二级参考文献22

  • 1章新生,杨宝全,姚金先.电力机车受电弓的静接触压力曲线及安全保护问题[J].材料开发与应用,1994,9(2):38-41. 被引量:2
  • 2吴天行.接触网的有限元计算与分析[J].铁道学报,1996,18(3):44-49. 被引量:31
  • 3WU T X, BRENNAN M J. Dynamic stiffness of a railway overhead wire system and its effect on pantograph-catenary system dynamics[J]. Journal of Sound and Vibration, 1999, 219(3): 483- 502.
  • 4ARNOLD M, SIMEON B. Pantograph and catenary dynamics: a benchmark problem and its numerical solution[J]. Applied Numerical Mathematics, 2000, 34(4): 345-362.
  • 5LOPEZ-GARCIA O, CAMICEROA, TORRESV. Computation of the initial equilibrium of railway overheads based on the catenary equation[J]. Engineering Structures, 2006, 28(10): 1387 -1394.
  • 6METRIKINE A V, BOSCH A L. Dynamic response of a two-level catenary to a moving load[J]. Journal of Sound and Vibration, 2006, 292(3/4/5): 676-693.
  • 7HABER R B, ABEL J F. Initial equilibrium solution methods for cable reinforced membranes: part ( I )-formulations[J]. Computer Methods in Applied Mechanics and Engineering, 1982, 30(3), 263 -284.
  • 8WU T X, BRENNAN M J. Basic analytical study of pantographcatenary system dynamics[J].Vehicle System Dynarmics, 1998, 30(6): 443 456.
  • 9SHAN Q, ZHAI W M. A maeroelement method for catenary mode analysis[J]. Computers and Structures, 1998, 69(6): 767- 772.
  • 10BRUNO D, LEONARDI A. Nonlinear structural models in cableways transport systems[J].Simulation Practice and Theory, 1999, 7(3) : 207-218.

共引文献150

同被引文献28

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部