期刊文献+

基于精确噪声估计的迭代频谱感知算法 被引量:6

An Iterative Spectrum Sensing Algorithm Based on Accurate Noise Estimation
在线阅读 下载PDF
导出
摘要 当干扰系统先验信息全盲时,基于最小错误判断概率门限判决的迭代检测算法可以获得较好的检测性能。然而在实际应用中,低信噪比时很难做到对噪声参量的准确估计,从而导致算法最终收敛门限与最小错误判断概率门限差异较大,检测性能恶化。该文针对上述问题,提出一种改进的迭代检测算法,并通过推理给出了噪声功率、信号功率及信号占用率等参量的迭代估计式。另外,该文还讨论了检测性能指标与信噪比之间的约束关系,给出了要满足一定性能指标所需最低信噪比的闭式解。仿真结果验证了所提算法的有效性。 Without the priori information of interference system, iterative detection algorithm based on minimum-error-rate threshold can make a good performance. In practice, however, accurate noise estimation is difficult to achieve because of low SNR, which results in a large deviation between the iterative convergence threshold and the minimum-error-rate threshold, and then causes a deterioration in detection performance. To address these issues, an improved iterative detection algorithm is proposed in this paper. Meanwhile, the iterative estimation expression of noise power, signal power and signal occupancy rate are given by detailed derivation. In addition, the constrained relationship between detection performance and SNR is discussed, and the closed-form expression of the minimum SNR is proposed to meet certain performance indicators. The simulation results show the effectiveness of the proposed algorithm.
出处 《电子与信息学报》 EI CSCD 北大核心 2014年第3期655-661,共7页 Journal of Electronics & Information Technology
基金 国家科技重大专项(2012ZX03003011 2012ZX03003007 2013ZX 03003012) 国家973计划项目(2012CB316005) 国家自然科学基金-广东联合基金(U1035001)资助课题
关键词 无线通信 迭代频谱感知 低信噪比 噪声估计 检测性能 Wireless communication Iterative spectrum sensing Low SNR Noise estimation Detection performance
作者简介 通信作者:袁龙yuanlong5787@163.com袁龙:男,1988年生,硕士生,研究方向为信号检测与分析、宽带认知无线电系统设计与实现. 邢禄:女,1989年生,硕士生,研究方向为宽带认知无线电通信系统设计、无线通信系统信源仿真技术. 彭涛:男,1977年生,副教授,研究方向为无线通信原理与技术研究、下一代无线通信网络技术研究、认知无线电通信技术. 王文博:男,1965年生,教授,研究方向为新一代移动通信体制的研究、信号处理在移动通信中的应用.
  • 相关文献

参考文献2

二级参考文献15

  • 1张仔兵,李立萍,肖先赐.MPSK信号的循环谱检测及码元速率估计[J].系统工程与电子技术,2005,27(5):803-806. 被引量:44
  • 2黄春琳.基于循环平稳特性的低截获概率信号的截获技术研究[D].长沙:国防科技大学,2005.
  • 3J Mitola Ⅲ, G Q Maguire. Cognitive Radio: Making software radios more personal [J]. IEEE Pers. Commun, 1999, 6: 13-18.
  • 4Z Quan, S. Cui and A. H. Sayed. Optimal linear,cooperative for spectrum sensing in cognitive radio networks [J]. IEEE J. Select. Topics Signal Proeesslng, 2008, 2(1): 28-40.
  • 5Y C Liang; Y H Zeng. Sensing-Throughput Tradeoff for Cognitive Radio Networks [A]. IEEE ICC Proceedings [C]. Scotland, 2007. 5330-5335.
  • 6R Tandra, A Sahai. SNR walls for signal detection [J]. IEEE J. Select. Topics Signal Processing, 2008, 2(1): 4-17.
  • 7W A GARDNER. The spectral Correlation Theory of Cyclc-Stationary Time-Series [J]. Signal processing, 1986, 11 : 13-36.
  • 8V DESIMIR, O MILORAD. Matrix-based method for the spectral correlation characterization of digital modulation [J]. Electronics and Energetics, 1998, 11(3): 271-284.
  • 9Mitola J. Cognitive radio : making software radios morepersonal [ J ]. IEEE Personal Communications, 1999,6(4) :13-18.
  • 10Andrea Mariani, Andrea Giorgetti, Marco Chiani.Effects of noise power estimation on energy detection forcognitive radio applications [ J ]. IEEE Transactions onWireless Communications, 2011,12( 12) ; 3410-3420.

共引文献10

同被引文献35

  • 1SHENG Bin. A robust non-data-aided SNR estimation method for OFDM systems[J]. Transactions on Emerging Telecommunications Technologies, 2013, 26(2): 103-106. doi:10.1002/ett.2612.
  • 2SAVAUX V, DJOKO-KOUAM M, LOUET Y, et al. Convergence analysis of a joint signal-to-noise ratio and channel estimator for frequency selective channels in orthogonal frequency division multiplexing context[J]. IET Signal Processing, 2014, 8(6): 693-701. doi:10.1049/ iet-spr.2013.0407.
  • 3SUN Minying, LI Yuan, and SUN Sumei. Impact of SNR estimation error on turbo code with high-order modulation[C]. IEEE 59th Vehicular Technology Conference, Milan, 2004, 3: 1320-1324. doi:10.1109/VETECS.2004. 1390467.
  • 4BAUMGARTNER S, HIRTZ G, and BAUMGARTNER A. A modified maximum likelihood method for SNR estimation in OFDM based systems[C]. IEEE International Conference on Consumer Electronics.(ICCE), Las Vegas, 2014: 155-158. doi: 10.1109/ICCE.2014.6775951.
  • 5CUI Tao and TELLAMBURA C. Power delay profile and noise variance estimation for OFDM[J]. IEEE Communications Letters, 2006, 10(1): 25-27. doi:10.1109/ LCOMM.2006.1576558.
  • 6SOCHELEAU F, AISSA-EL-BEY A, and HOUCKE S. Non data-aided SNR estimation of OFDM signals[J]. IEEE Communications Letters, 2008, 12(11): 813-815. doi:10.1109/ LCOMM.2008.081134.
  • 7WANG Kun and ZHANG Xianda. Blind noise variance and SNR estimation for OFDM systems based on information theoretic criteria[J]. Signal Processing, 2010, 90(9): 2766-2772. doi: 10.1016/j.sigpro.2010.03.007.
  • 8NGUYEN V D, KUCHENBECKER H, and PATZOLD M. Estimation of the channel impulse response length and the noise variance for OFDM systems[C]. IEEE 61th Vehicular Technology Conference, Stockholm, 2005, 1: 429-433. doi:10.1109/VETECS.2005.1543326.
  • 9WANG Kun and ZHANG Xianda. Robust spectrum sensing algorithm for cognitive radio networks[C]. IEEE 10th International Conference on Signal Processing (ICSP), Beijing, 2010: 1520-1523. doi:10.1109/ICOSP.2010.5656703.
  • 10VAN DE BEEK J, SANDELL M, and BORJESSON P O. ML estimation of time and frequency offset in OFDM systems[J]. IEEE Transactions on Signal Processing, 1997, 45(7): 1800-1805. doi:10.1109/78.599949.

引证文献6

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部