期刊文献+

Kalina地热发电热力循环效率影响因素分析 被引量:12

ANALYSIS OF INFLUENCING FACTORS ON KALINA CYCLE GEOTHERMAL POWER PLANT
在线阅读 下载PDF
导出
摘要 结合Kalina循环系统的工作原理,采用EES软件平台编制计算软件,并完成了系统循环过程的模拟计算,计算结果与实际运行参数吻合较好。在此基础上,对Kalina地热发电循环进行分析,从冷凝水温度、汽轮机入口压力以及氨的质量浓度等方面研究对循环效率的影响。结果表明,系统循环效率随着汽轮机入口压力存在峰值,随基本溶液中氨的质量浓度的升高而升高,但氨的质量浓度过高就要求发生器换热面积过大,造成系统整体经济性下降。此外,还对汽轮机的安全运行进行了分析。 Based on the principle of Kalina cycle system, a computing program simulating the cycle process was eompiled by EES software, and the results have a good agreement with the actual operating parameters. The influence factors such as condensate temperature, turbine inlet pressure, ammonia mass friction, etc were analyzed using the software. The results showed that the cycle efficiency increases with the turbine inlet pressure at first, and then decrease, which indicates that there exists a peak value, and the cycle efficiency increases with the increasing of mass fraction of ammonia, however, excessively high mass fraction will results in large heat exchanger area which decline the economy. In addition, the safe operation of turbine was analyzed.
出处 《太阳能学报》 EI CAS CSCD 北大核心 2014年第2期326-331,共6页 Acta Energiae Solaris Sinica
基金 天津市自然科学基金面上项目(13JCYBJC19200) 国家高技术研究发展(863)计划(2012AA053001)
关键词 地热发电 KALINA循环 循环效率 氨-水混合工质 geothermal power generation Kalina cycle cycle efficiency ammonia-water mixtures
作者简介 通信作者:张伟(1976~),男,博士、副教授,主要从事低焓地热资源的工程应用方面的研究。zhang_wei@tin.edu.cn
  • 相关文献

参考文献12

  • 1李太禄,朱家玲,张伟.Arrangement Strategy of Ground Heat Exchanger with Groundwater[J].Transactions of Tianjin University,2012,18(4):291-297. 被引量:4
  • 2Hettiarachchi H D, Golubovic M, Worek W M, et al. Optimum design criteria for an organic Rankine cycle using low-temperature geothermal heat sources [ J ]. Journal of Energy Resources Technology, 2007, 129 ( 3 ) : 243-247.
  • 3Kalina A I. Combined cycle system with novel bottoming cycle [ J ]. Journal of Engineering for Gas Turbines and Power, 1984, 106(4) : 737-742.
  • 4Kalina A I, Leibowitz H M. Application of the Kalina cycle technology to geothermal power generation [ J] . Geothermal Resources Council Transactions, 1989, 13 (1) : 605-611.
  • 5E1-Sayed Y M, Tribus M. A theoretical comparison of the Rankine and Kalina cycles [ J ]. ASME Special Publications, ]985, AES-I: 97-102.
  • 6Ibrahim O M, Klein S A. Absorption power cycles[ J ]. Energy (Oxford), 1996, 21(1): 21-27.
  • 7Ibrahim O M, Klein S A. High-power multi-stage Rankine cycles[J]. Journal of Energy Resources, Technology, 1995, 117(3): 192-196.
  • 8Lolos P A, Rogdakis E D. A Kalina power cycle driven by renewable energy sources [J ]. Energy, 2009, 34 (4) : 457-464.
  • 9Hjartarson H, Maack R, Johannesson S. Htsavik energy[ A ]. Multiple Use of Geothermal Energy [ C ], Reykjavik, Iceland, 2003.
  • 10Hjartarson H. Multiple-use of geothermal Energy in Hfisavk[ A ]. Nordvarme [ C ], Council in Nyk ping, Sverige, 2002.

二级参考文献25

  • 1徐士鸣.NH_3/H_2O溶液热力参数表达式的推导与程序编制[J].流体机械,1995,23(2):55-59. 被引量:19
  • 2刘猛,张娜,蔡睿贤.新型燃气-氨水蒸汽功冷联供联合循环[J].中国电机工程学报,2006,26(17):82-87. 被引量:9
  • 3包天舒,郑星丹.氨水吸收式制冷系统的实验研究和热经济分析[M].北京化工大学出版社,2005.
  • 4廖健敏,杜垲.氨水吸收式制冷GAX循环性能分析[M].东南大学出版社,2004.
  • 5Gershon Grossman. Modular simulation of absorption system [R]. ORNIJSub/86-XSY123V, 2000.
  • 6Ibrahim O M, Klein S A. Thermodynamic properties of ammonia-water mixtures[ J]. ASHRAE Transactions, 1993, 99(1):1495-1502.
  • 7Engler M, Grossman G. Comparative simulation and investigation of ammonia-water absorption cycles for heat pump applications[J]. Int J Rehig , 1997,20:504-516.
  • 8Ingersoll L R, Plass H J. Theory of the ground pipe heat source for the heat pump [J]. ASHVE Transactions, 1948, 54: 339-348.
  • 9Claesson J, Dunand A. Heat Extraction from the Ground by Horizontal Pipes: A Mathematical Analysis [M]. Swedish Council for Building Research, Stockholm, 1983.
  • 10Bose J E, Parker J D. Ground-coupled heat pump re- search[J]. ASHRAE Transactions, 1983, 89 (2B): 375- 390.

共引文献6

同被引文献120

引证文献12

二级引证文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部