期刊文献+

小型飞轮储能系统高温超导磁悬浮轴承 被引量:13

Small-Scale Flywheel Energy Storage System Equipped with High Temperature Superconducting Magnetic Bearing
在线阅读 下载PDF
导出
摘要 介绍了采用氧化物超导体钇钡铜氧(YBCO)准单畴块材作为定子构件、钕铁硼永磁体作为转子构件的立式全超导磁悬浮轴承初步研究结果。其中,转子系统由转轴、永磁体和飞轮共同组成,在三相调频感应电机驱动下,转子系统最高试验转速可达15000r/min。初步测试结果(0-200Hz)显示,在转动频率而接近25Hz系统发生共振,共振时转子最大径向摆动约为±170um。在35-200Hz范围内转子运行状态稳定,最大径向摆动约为±50um。实验结果显示,超导磁悬浮轴承转动损耗主要来自磁滞损耗和涡流损耗,而磁场分布不均匀性与超导定子材料的磁通蠕动可能是导致转动损耗的主要原因。 Preliminary study of vertical type of magnetic bearings is reported, which are composed of a superconducting stator with several yttrium-barium-copper-oxide(YBCO) quasi-single domains and a Nd-Fe-B permanent magnetic rotor. The rotor consists of a spindle, a permanent magnet and a flywheel. Driven by a variable-frequency three-phase induction motor, the maximum rotational speed of the rotor is up to 15 000r/min. The resonant frequency of the rotor system is observed near f0-25Hz with maximum radial vibration amplitude about ±170um. The rotor motion is observed of stable between 35-200Hz, and is with maximum radial vibration amplitude about ±50um. The results reveal that the losses in magnetic bearings are mainly induced from magnetic hysteresis loss and eddy-current loss. And the asymmetrical magnetic distribution as well as flux creeps may be responsible for the rotational loss.
出处 《电工技术学报》 EI CSCD 北大核心 2014年第1期181-186,共6页 Transactions of China Electrotechnical Society
关键词 高温超导磁悬浮轴承 飞轮储能 临界转速 能量损耗 High temperature superconducting magnetic bearing, flywheel energy storage, critical rotational speed, energy loss
作者简介 邱傅杰 男,1989年生,硕士,研究方向为超导磁悬浮技术。 徐克西 男,1956年生,博士,教授,研究方向为超导磁悬浮技术。
  • 相关文献

参考文献15

  • 1Hull J R. Superconducting bearings[J]. Supercon- ductor Science and Technology, 2000, 13(2): R1-R15.
  • 2Wolsky A M. An overview of flywheel energy systems with HTS bearings[J]. Superconductor Science and Technology, 2002, 15(5): 836-837.
  • 3Strasik M, Johnson P E, Day A C, et al. Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2133-2137.
  • 4Strasik M, Hull J R, Mittleider J A, et al. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings[J]. Superconductor Science and Technology, 2010, 23(3) 034021. 1-034021.5.
  • 5Werfel F N, Floegel Delor U, Rothfeld R, et al. Superconductor bearings, flywheels and transportation [J]. Superconductor Science and Technology, 2012, 25(1): 014007. 1-014007. 16.
  • 6朱圣良,袁春燕.高温超导体磁悬浮轴承在低温液体泵中应用的可行性分析[J].低温与超导,2011,39(2):25-29. 被引量:4
  • 7Werfel F N, Floegel-Delor U, Rothfeld R, et al. Modelling and construction of a compact 500 kg HTS magnetic bearing[J]. Superconductor Science and Technology, 2005, 18(2): S19-S23.
  • 8Koshizuka N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C: Superconductivity, 2006, 445:1103-1108.
  • 9Fang J R, Lin L Z, Yan L Get al. A new flywheel energy storage system using hybrid superconducting magnetic bearings[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1657-1660.
  • 10李永亮,方进,郭明珠.一种新型超导混合磁悬浮轴承的悬浮力特性分析[c].第九届全国超导学术研讨会,西安,2007.

二级参考文献68

  • 1张江华,曾佑文,王家素,王素玉,宋宏海.高温超导磁悬浮轴承悬浮力数值分析[J].低温与超导,2007,35(2):125-128. 被引量:4
  • 2Zhang Y, Postrekhin Y, Ma K B,et al. Reaction wheel with HTS bearings for mini-satellite attitude control[J]. Supercond. Sci. Technol., 2002, 15(5): 823-825.
  • 3Siems S O, Canders W R, Walter H, et al. Superconducting magnetic bearings for a 2MW/10kWh class energy storage flywheel system[J]. Supercond. Sci. Technol., 2004, 17(5): S229-S233.
  • 4Moon F C. Superconducting levitation[M]. New York: John Wiley and Sons, 1994.
  • 5Hull J R. Superconducting bearings[J]. Supercond. Sci. Technol., 2000, 13(2): R1-R15.
  • 6Ma K B, Postrekhin Y V, Chu W K. Superconductor and magnet levitation devices[J]. Rev. Sci. Instrum., 2003, 74(12): 4989-5017.
  • 7Waiter H, Bock J, Frohne C, et al. First heavy load bearing for industrial application with shaft loads up to 10 kN[J]. J. Phys. Conf. Ser., 2006, 43:995-998.
  • 8Koshizuka N, Ishikawa F, Nasu H, et al. Present status of R&D on superconducting magnetic bearing technologies for flywheel energy storage system[J]. Physica C, 2002, 378-381(Part 1): 11-17.
  • 9Wang J S, Wang S Y, Zeng Y W, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world[J]. Physica C, 2002, 378-381(Part 1): 809-814.
  • 10Day A C, Strasik M, et al. Design and testing of the HTS bearing for a 10 kWh flywheel system[J]. Supercond. Sci. Technol., 2002, 15(5): 838-841.

共引文献27

同被引文献99

引证文献13

二级引证文献60

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部