期刊文献+

LSSV M模型下的近红外光谱联合区间波长筛选方法 被引量:6

Near Infrared Spectroscopy Synergy Interval Wavelength Selection Method Using the LSSVM Model
在线阅读 下载PDF
导出
摘要 针对传统近红外光谱波长选择方法忽略模型中非线性因素的缺陷,采用具有非线性处理能力的最小二乘支持向量机,结合间隔策略的波长选择方法和联合区间的思想,提出了一种非线性模型下的波长筛选算法—联合区间最小二乘支持向量机(synergy interval least squares support vector machines,siLSSVM)。以苹果糖度近红外光谱数据为例,与传统siPLS波长筛选方法相比,新算法的预测集均方根误差(RMSEP)在PLS模型和LSSVM模型预测时分别提高了37.43%和47.88%,预测集相关系数(RP)在PLS模型和LSSVM模型预测时分别增加了6.04%和7.31%。实例表明,对于存在非线性因素较强的光谱数据,siLSSVM算法能够有效的挑选最优波长区间与提高模型的预测精度和鲁棒性,为近红外光谱在非线性因素下筛选波长提供了新前景。 The present paper proposes a wavelength selection algorithm based on nonlinear factors named Synergy interval least squares support vector machines (siLSSVM ) .siLSSVM combines the interval strategy of wavelength selection method with the idea of synergy interval and overcomes the disadvantages of the traditional wavelength selection methods ,i .e .ignoring the non-linear factors .Taking the near infrared spectrum data of apple sugar as performance verification object of this new algorithm , comparing new algorithm with siPLS ,the model performance has been greatly improved .The root-mean-square error (RMSEP) in new algorithm has increased respectively by 37.43% and 47.88% under the model of PLS and LSSVM ,with increases of 6.04% and 7.31% in the correlative coefficient (RP) .The examples illustrate that siLSSVM can efficiently select the optimum wavelength interval for spectrum data with strong nonlinear factors .This algorithm greatly improves the prediction accuracy and robustness of the model ,which provides a new prospect for near infrared spectral with nonlinear factors to select wavelength .
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第3期668-672,共5页 Spectroscopy and Spectral Analysis
基金 教育部国家级创新创业训练计划项目(201210295058) 江苏省产学研前瞻性联合研究项目(BY2013015-27)资助
关键词 联合区间最小二乘支持向量机 非线性 苹果糖度 近红外光谱 波长筛选 Synergy interval least squares support vector machines Nonlinear factors Data of apple sugar Near infrared spec-trum Wavelength selection
作者简介 彭秀辉,1990年生,江南大学自动化研究所本科生e-mail:jnwlpxh@163.com 通讯联系人e-mail:fliu@jiangnan.edu.cn
  • 相关文献

参考文献3

二级参考文献21

  • 1刘云飞,薛联凤,阮锡根,于芬.竹材细胞壁晶区变化规律的研究[J].南京林业大学学报(自然科学版),2006,30(6):66-68. 被引量:3
  • 2张静,程玉来,重滕和明.利用近红外透射光谱技术测定苹果糖度的研究[J].食品科技,2007,32(2):245-247. 被引量:5
  • 3王玉荣,覃道春,任海青,费本华,江泽慧.无损检测阔叶材纤维长度的近红外光谱法[J].木材加工机械,2007,18(3):34-35. 被引量:10
  • 4张毅.电站锅炉燃烧优化控制理论及应用研究[D].北京:清华大学,2006.
  • 5Smola A J, Scholkope B. A tutorial on support vector regression[J]. Statistics and Computing, 2004,14:199 - 222.
  • 6Zheng L G, Zhou H, Wang C L, et al. Combing support vector regression and ant colony optimization to reduce NOx emissions in coal fired utility boilers [J]. Energy and Fuels, 2008, 22: 1034-1040.
  • 7Vapnik V N. Statistical Learning Theory [M]. New York: J Wiley, 1998.
  • 8Vapnik V N. The Nature of Statistical Learning Theory [M].New York: Springer Verlag, 1999.
  • 9LU Hui-shan(陆辉山). Study for crucial technique in on-line non-destructive determination of fruit internal quarlity by VIS/NIR spectroscopy (水果内部品质可见/近红外光谱实时无损检测关键技术研究)[D] Hangzhou: Zhejiang University, 2006. (in Chinese).
  • 10FAN Sheng-hui (范胜辉). Research on quantum evolutionary algorithm and its applications(量子进化算法及其应用研究) [D]. Nanjing: Nanjing University ofAeronautics and Astronautics, 2010. (in Chinese).

共引文献175

同被引文献114

引证文献6

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部