摘要
PAHs作为一类持久性有机污染物对土壤环境质量产生深刻的影响。选用了中国亚热带城市普遍采用的4个树种(樟树、栾树、广玉兰、马褂木),利用盆栽试验,研究了PAHs污染土壤植物修复对酶活性影响。结果表明,多酚氧化酶活性定量抑制率为-94.98%—16.29%,过氧化氢酶为-76.71%—13.19%,磷酸酶为-49.62%—56.38%。土壤酶活性对PAHs污染的响应受到不同树种的影响。方差分析表明,过氧化氢酶活性在不同污染水平间差异显著,3种酶活性在不同时间下差异性显著,3种酶活性在不同树种×污染水平、不同时间×污染水平二因素作用下差异都不显著。主成分分析表明,PAHs污染对土壤酶活性的影响大于树种的影响,多酚氧化酶和磷酸酶对土壤反映敏感。
Polycyclic aromatic hydrocarbons (PAHs) are widespread in nature because of several polluting anthropogenic activities. They have been recognized as a potential health risk due to their intrinsic chemical stability, high recalcitrance to different types of degradation and high toxicity to living organisms. Soil enzymes, being in intimate contact with the soil's environment and very sensitive to any ecosystem perturbation, are well suited for assessing the impact of pollution on the soil quality. The aim of this trial was to quantify the responses of soil enzyme activity during the phytoremediation of PAHs impacted soil. Four tree species including Cinnamomum camphora, Magnolia grandiflora, Koelreuteria bipinnata, Liriodendron chinense, from subtropical China, were selected and planted separately in the pots in which soils were treated with diesel oil to three concentration levels of PAHs (L1 〈 L2 〈 L3 ). Phosphatase, polyphenol oxidase and hydrogen peroxide activity were evaluated at 0, 3, 6, 9 and 12 months after the PAHs contamination. The resulted showed that the inhibition rates of polyphenol oxidase activity ranged from -94.98% to 16.29%, the inhibition rates of hydrogen activity ranged from -76.71% to 13.19%, and the inhibition rates of phosphatase activity ranged from -49 peroxide 62% to 56. 38%. Enzymatic activity in PAHs contaminated soils were also affected by different tree species. Analysis of varianceindicated that there was a significant difference of hydrogen peroxide activity between different PAHs levels and there were a significant difference of 3 enzyme activities between different times, but all 3 enzyme activities were not significant between interactions of different trees and PAHs levels and between interactions of different times and PAHs levels. Two principal components were extracted from the principal component analysis and their cumulative contribution of variance accounted for 94.19%. The variance contribution rate of PC 1 and PC2 were 87.61% and 6.58%, respectively. The correlation coefficients between main substrates and PC1 or PC2 indicated that enzymatic activity was influenced by PAHs and trees together, but the such influence from PAHs contamination was higher than that from the trees. Meanwhile, the principal component analysis also showed the polyphenol oxidase and phosphatase activities impacted by the PAHs and trees were higher than the hydrogen peroxide activity.
出处
《生态学报》
CAS
CSCD
北大核心
2014年第3期581-588,共8页
Acta Ecologica Sinica
基金
湖南省教育厅科研重点项目(12A149)
国家林业局推广项目(2012-64)
国家自然基金面上项目(31070410)
湖南省林业厅科技项目
湖南省普通高校青年骨干教师培养对象
作者简介
通讯作者Correspondingauthor.E—mail:forestranger33@hotmail.com