期刊文献+

非理想化学计量比氧化铀的拉曼和红外光谱 被引量:6

Raman and Infrared Spectra of Non-Stoichiometry Uranium Oxides
在线阅读 下载PDF
导出
摘要 测量了七种非理想化学计量比的UO2+ x (0< x<0.66)及UO2和U3 O7等理想化学计量比氧化铀的拉曼和红外光谱,并进行了对比分析,其中U3 O7和U3 O8之间UO2+ x的分子振动光谱为首次报道。拉曼光谱结果显示,随着UO2+ x中x 值的增加,UO2特征峰中的578和1150 cm -1峰强度快速减弱,当 x=0.19时,这两峰基本消失,可视为准完美萤石晶体结构U O2的标志。445 cm-1峰强度在减弱的同时变宽并偏移,当 x=0.32时,该峰已偏移至459 cm-1处,同时在~630 cm-1出现一弱肩峰,这与四方相U3 O7的特征峰一致。当 x≥0.39时,459 cm -1峰发生分裂,在235和754 cm-1处出现新峰并增强,其特征逐渐与正交相的α-U3 O8接近。但直至 x=0.60时,与α-U3 O8相比其333,397,483和805 cm -1峰仍不突出。红外光谱结果显示,随着U O2+ x中x值的增加,U O2位于400~570 cm -1区间的强吸收特征谱带逐渐分裂为~421和~515 cm -1两峰并增强,同时U O2在~700 cm -1的弱吸收峰逐渐消失,~645 cm -1处的肩峰逐渐显现,出现的这三个峰正是U3 O7的特征红外吸收峰。当 x≥0.39时,在744 cm -1出现一强吸收峰并增强,该峰是α-U3 O8的最强特征峰。但即使 x=0.60时,~645 cm-1峰仍然存在,同时~515 cm-1峰也未明显分裂成485和535 cm -1峰,这表明U O2.60仍处于四方相和正交相的过渡阶段。上述结果表明,随着 x值的增加,U O2+ x的晶体结构发生变化,每次变化均在拉曼和红外光谱中得到体现。通过对比各特征峰相对强度和位置的变化情况,可很好区分和表征不同的氧化铀。 Both of Raman and infrared spectra of seven non-stoichiometry and threestoichiometry uranium oxides ,including UO2 ,U3O7 and UO2+ x(0< x<0.66) ,are presented and discussed. The spectra of UO2+ x in the stoichiometry range ,U3O7 to U3 O8 ,were first obtained and reported. Three typical peaks were observed at 445 ,578 and 1 150 cm-1 in the Raman spectrum of uranium dioxide. The intensities of the peaks at 578 and 1 151 cm-1 decrease quickly with increasing x value of UO2+ x ,and while x=0.19 ,the two peaks disappear. Such peaks can therefore be considered as a fin-gerprint of the quasi-perfect UO2 fluo-rite structure. The peak at 445 cm -1 tends to weaken ,broaden and shift to higher wavenumber in more oxidised samples. When x=0.32 ,this peak is shifted to the 459 cm -1 and a weak peak at about 630 cm -1 appears. The two new peaks are typical of the tetragonal U3 O7. While x≥0.39 ,the peak at 459 cm -1 further splits into separate components. Two peaks at 235 and 754 cm -1 appear for UO2.39 and are visible with increased intensity as the oxygen-uranium ratio is increased. And the Raman spectra of UO2+ x are gradually close to U3 O8 in theα-phase ,which has an orthorhombic unit cell. But several strongest features of theα-U3 O8 specturm at 333 ,397 ,483 and 805 cm-1 are still not outstanding even in UO2.60. The main feature of the UO2 infrared spectrum shows a very broad and strong adsorption band at 400~570 cm-1 and another feature is a weak adsorption peak at a-bout 700 cm -1. The 400~570 cm-1 band undergoes a progressive splitting into two new peaks at ~421 and ~515 cm -1 through increasing incorporation of oxygen into UO2. The weak peak at about 700 cm-1 disappears and a new weak peak appears at about 645 cm -1. The three new peaks are the infrared absorption features of U 3 O7. An absorption peak at 744 cm-1 which is the strongest feature ofα-U3 O8 infrared spectrum appears for UO2.39 and is visible with increased intensity in more oxidised samples.The peak at about 645 cm -1 still exists and 515 cm -1 peak has no further splitting into two new peaks at 485 and 535 cm -1 which also are the infrared absorption features of U3O8 in UO2.60. This indicates that UO2.60 is still in the transition period between tet-ragonal and orthorhombic phase of uranium oxide. A sequence of phase transitions occurs through increasing x value of UO 2+ x with different Raman and infrared features.It is easy to identify different uranium oxides by comparing of relative intensities and locations of their characteristic peaks .
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第2期405-409,共5页 Spectroscopy and Spectral Analysis
基金 国防基础科研项目(B1520110010)资助
关键词 氧化铀 拉曼光谱 红外光谱 Uranium oxide Raman spectroscopy Infrared spectroscopy
作者简介 吕俊波,1981年生,中国工程物理研究院工程师e-mail:lvjunb0263@yahoo.com.cn 通讯联系人e-mail:gslwxy@21cn.com
  • 相关文献

参考文献15

  • 1Palacios M L;Taylor S T.查看详情[J],{H}Applied Spectroscopy20001372.
  • 2Desgranges L;Baldinozzi G;Simon P.查看详情[J],{H}Journal of Raman Spectroscopy2012455.
  • 3Allen G C;Holmes N R.查看详情[J],{H}Applied Spectroscopy1994525.
  • 4Zhu Yubao;Hansen W N;Ward J.查看详情[J],{H}Applied Spectroscopy1989113.
  • 5Allen G C;Crofts J A;Griffiths A J.查看详情[J],{H}Journal of Nuclear Materials1976273.
  • 6Manara D;Renker B.查看详情[J],{H}Journal of Nuclear Materials2003233.
  • 7He Heming;Shoesmith D W.查看详情[J],Physical Chemistry Chemistry Physics20108108.
  • 8He Heming;Qin Z;Shoesmith D W.查看详情[J],{H}Electrochimica Acta201053.
  • 9Rousseau G;Desgranges L;Charlot F.查看详情[J],{H}Journal of Nuclear Materials200610.
  • 10Sarsfield M J;Taylor R J;Puxley C.查看详情[J],{H}Journal of Nuclear Materials2012333.

同被引文献39

  • 1BARTSCHER W, BOEUF A, CACIUFFO R,et al. Neutron diffraction study of 13-UDa and β- UH3 [J]. Solid State Communications, 1985, 53 (4) : 423-426.
  • 2ABRAHAM B M, FLOTOW H E. The heats of formation of uranium hydride, uranium deuteride and uranium tritide at 25 ℃ [J]. Journal of the American Chemical Society, 1955, 77(6): 1 446- 1 448.
  • 3IMOTO S, TANABE T, UTSUNOMIYA K. Separation of hydrogen isotopes with uranium hydride[J]. International Journal of Hydrogen Energy, 1982, 7(7): 597-601.
  • 4SCHNAARS D D, WU G, HAYTON T W. Re- activity of UH3 with mild oxidants[J]. Dalton Transactions, 2008, 44:6 121-6 126.
  • 5GUYADEC F L, NIN G X, BAYLE J P, et al. Pyrophoric behaviour of uranium hydride and uranium powders[J]. Journal of Nuclear Materi- als, 2010, 396(2-3): 294-302.
  • 6TOTEMEIER T. Characterization of uranium corrosion products involved in a uranium hydride pyrophoric event[J]. Journal of Nuclear Materi- als, 2000, 278(2): 301-311.
  • 7LONGHURST G R, HEICS A G, SHMAYDAW T, et al. Experimental evaluation of the con- sequences of uranium bed air-ingress accidents [J]. Fusion Science and Technology, 1992, 21: 1 017-1 023.
  • 8ROBINSON S, THOMAS G. Uranium hydride formation and properties: A review with com mentary on handling and disposition, SAND96- 8206[R]. Albuquerque; Sandia National Labora- tory, 1996.
  • 9ABLITZER C, le GUYADEC F, RAYNAL J, et al. Influence of superficial oxidation on the pyrophoric behaviour of uranium hydride and uranium powders in air[J]. Journal of Nuclear Materials, 2013, 432(1-3): 135-145.
  • 10SHUGARD A D, BUFFLEBEN G M, KAN- OUFF M P, et al. Rapid hydrogen gas genera- tion using reactive thermal decomposition of uranium hydride, SAND2011-6939[R]. Albu- querque: Sandia National Laboratory, 2011.

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部