期刊文献+

纳米晶硅的掺杂及表面改性研究(英文)

Silicon Nanocrystals Doping and Surface Modification
在线阅读 下载PDF
导出
摘要 采用基于密度泛函理论的第一性原理方法(DMOL3程序),在广义梯度近似(GGA)下,计算了硅纳米晶(Si75H76)在B和P掺杂和乙基(—CH2CH3)、异丙基(—CH(CH3)2)表面改性等情形下态密度、结合能及能隙的变化。结果表明:掺杂对体系的禁带宽度(约3.12eV)几乎没有影响,但会引入带隙态;三配位的B掺杂,在禁带中靠近导带约0.8eV位置引入带隙态,三配位的P掺杂在禁带中靠近价带0.2eV位置引入带隙态;四配位的B掺杂,在禁带中靠近价带约0.4eV位置引入带隙态,四配位的P掺杂在禁带中靠近导带约1.1eV位置引入带隙态;且同等掺杂四配位时体系能量要低于三配位;适当的乙基或异丙基表面覆盖可以降低体系的总能量,且表面覆盖程度越高体系能量越低,但在表面嫁接有机基团过多将导致过高位阻,计算时系统不能收敛。 Using the first-principles method based on density functional theory ,at the generalized gradient ap-proximation (GGA ) ,the state density ,the change of binding energy and the energy gap of the silicon nano-crystals (Si75 H76 ) with the circumstances of boron (B)-doped ,phosphorus (P)-doped and the surface modifi-cation with ethyl (CH2CH3 ) ,isopropyl (-CH(CH3 )2 ) have been calculated .The results showed that the B or P-doped have little impact on the energy gap value (3.12 eV) of silicon nanocrystals (SiNcs) ,except that some energy levels will be introduced in the forbidden band .The energy level caused by three-coordinated B-doped SiNcs is Ec -0.8 eV ,while it is Ev +0.2 eV for the three-coordinated P-doped .However ,the energy level position is Ev +0.4 eV for the four-coordinated B-doped SiNcs ,and Ec -1.1 eV for the four-coordinated P-doped .Total energy of the system with the four-coordinated doped is lower than that with the three-coordi-nated doped in the other same conditions .The total energy of SiNcs system lessen when the surface is modified with appropriate ethyl or isopropyl .The total energy decreases with the surface coverage of organo-functional group increasing .But ,the calculation can’t converge because of too high resistance when the SiNcs surface are grafted with too many organic groups .
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2014年第2期331-334,共4页 Spectroscopy and Spectral Analysis
基金 The National 863 Program(2011AA050515)fund support Sichuan Normal University for the program support
关键词 纳米晶硅 掺杂 表面改性 模拟 Silicon nanocrystals Doping Surface modification Simulation
作者简介 ZHANG Nian-bo, (1987--), a Postgraduate in Sichuan University
  • 相关文献

参考文献14

  • 1Thelander C;Agarwal P;Brongersma S.查看详情[J],Materialstoday2006(10):28.
  • 2FAN Wei-xing;HAN Jing-hua;LI Hai-bo.查看详情[J],{H}SPECTROSCOPY AND SPECTRAL ANALYSIS2011(12):3185.
  • 3Walters R J;Bourianoff G I;Atwater H A.查看详情[J],{H}Nature Materials2005(2):143.
  • 4Anders Hagfeldt.查看详情[J],{H}Accounts of Chemical Research2000(5):269.
  • 5Zou M;Cai L;Wang H.查看详情[J],{H}Tribology Letters2005(1):43.
  • 6Gioug Oh;Dooyeon Kim;Sangil Kim.查看详情[J],Proceedings ICHIT062006730.
  • 7Edelman F;Chack A;Weil R.查看详情[J],{H}Solar Energy Materials and Solar Cells2003(2):125.
  • 8Tomohiro Nozaki;Kenji Sasaki;Tomohisa Ogino.查看详情[J],Thermal Sci & Eng2006(4):75.
  • 9Holman Zachary C;Kortshagen Uwe R.查看详情[J],{H}Nano Letters2011(5):2133.
  • 10Mangolini L;Thimsen E;Kortshagen U.查看详情[J],{H}Nano Letters2005(4):655.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部