期刊文献+

Short-term safety and efficacy of the biodegradable iron stent in mini-swine coronary arteries 被引量:9

Short-term safety and efficacy of the biodegradable iron stent in mini-swine coronary arteries
原文传递
导出
摘要 Background To overcome the drawbacks of permanent years. The bioabsorbable polymer vascular scaffold (BVS) stents, biodegradable stents have been studied in recent was the first bioabsorbable stent to undergo clinical trials, demonstrating safety and feasibility in the ABSORB studies. Iron can potentially serve as the biomatedal for biodegradable stents. This study aimed to assess the short4erm safety and efficacy of a biodegradable iron stent in mini-swine coronary arteries. Methods Eight iron stents and eight cobalt chromium alloy (VISION) control stents were randomly implanted into the LAD and RCA of eight healthy mini-swine, respectively. Two stents of the same metal base were implanted into one animal. At 28 days the animals were sacrificed after coronary angiography, and histopathological examinations were performed. Results Histomorphometric measurements showed that mean neointimal thickness ((0.46±0.17) mm vs. (0.45±0.18) mm, P=0.878), neointimal area ((2.55±0.91) mm2 vs. (3.04±1.15) mm2, P=0.360) and percentage of area stenosis ((44.50±11.40)% vs. (46.00±17.95)%, P=0.845) were not significantly different between the iron stents and VISION stents. There was no inflammation, thrombosis or necrosis in either group. The scanning electron microscopy (SEM) intimal injury scores (0.75±1.04 vs. 0.88±0.99, P=0.809) and number of proliferating cell nuclear antigen (PCNA) positive staining cells were not significantly different between the two groups. The percentage of neointimal coverage by SEM examination was numerically higher in iron stents than in VISION stents ((84.38±14.50)% vs. (65.00±22.04)%, P=0.057), but the difference was not statistically significant. Iron staining in the tissue surrounding the iron stents at 28 days was positive and the vascular wall adjacent to the iron stent had a brownish tinge, consistent with iron degradation. No abnormal histopathological changes were detected in coronary arteries or major organs. Conclusions The biodegradable iron stent has good biocompatibility and short-term safety and efficacy in the mini- swine coronary artery. Corrosion of iron stents is observed at four weeks and no signs of organ toxicity related to iron degradation were noted. Background To overcome the drawbacks of permanent years. The bioabsorbable polymer vascular scaffold (BVS) stents, biodegradable stents have been studied in recent was the first bioabsorbable stent to undergo clinical trials, demonstrating safety and feasibility in the ABSORB studies. Iron can potentially serve as the biomatedal for biodegradable stents. This study aimed to assess the short4erm safety and efficacy of a biodegradable iron stent in mini-swine coronary arteries. Methods Eight iron stents and eight cobalt chromium alloy (VISION) control stents were randomly implanted into the LAD and RCA of eight healthy mini-swine, respectively. Two stents of the same metal base were implanted into one animal. At 28 days the animals were sacrificed after coronary angiography, and histopathological examinations were performed. Results Histomorphometric measurements showed that mean neointimal thickness ((0.46±0.17) mm vs. (0.45±0.18) mm, P=0.878), neointimal area ((2.55±0.91) mm2 vs. (3.04±1.15) mm2, P=0.360) and percentage of area stenosis ((44.50±11.40)% vs. (46.00±17.95)%, P=0.845) were not significantly different between the iron stents and VISION stents. There was no inflammation, thrombosis or necrosis in either group. The scanning electron microscopy (SEM) intimal injury scores (0.75±1.04 vs. 0.88±0.99, P=0.809) and number of proliferating cell nuclear antigen (PCNA) positive staining cells were not significantly different between the two groups. The percentage of neointimal coverage by SEM examination was numerically higher in iron stents than in VISION stents ((84.38±14.50)% vs. (65.00±22.04)%, P=0.057), but the difference was not statistically significant. Iron staining in the tissue surrounding the iron stents at 28 days was positive and the vascular wall adjacent to the iron stent had a brownish tinge, consistent with iron degradation. No abnormal histopathological changes were detected in coronary arteries or major organs. Conclusions The biodegradable iron stent has good biocompatibility and short-term safety and efficacy in the mini- swine coronary artery. Corrosion of iron stents is observed at four weeks and no signs of organ toxicity related to iron degradation were noted.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2013年第24期4752-4757,共6页 中华医学杂志(英文版)
关键词 biodegradable iron stent mini-swine coronary artery histomorphometry biodegradable, iron stent mini-swine coronary artery, histomorphometry
作者简介 Correspondence to: Dr. QIU Hong, Department of Cardiology, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100037, China (Tel: 86-10-88396258. Fax: 86-10-88380978. Email: qiuhong6780@sina.com)
  • 相关文献

参考文献21

  • 1Moses JW, Leon MB, Popma J J, Fitzgerald P J, Holmes DR, O'Shaughnessy C, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N Engl J Med 2003; 349:1315-1323.
  • 2Stone GW, Ellis SG, Cox DA, Hermiller J, O'Shaughnessy C, Mann JT, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease. N Engl J Med 2004; 350: 221-231.
  • 3Erne P, Schier M, Resink TJ. The road to Ioloabsorbal01e stents: reaching clinical reality? Cardiovasc Intervent Radiol 2006; 29: 11-16.
  • 4Wentzel J J, Whelan DM, van der Giessan WJ, van Beusekom HM, Andhyiswara I, Serruys PW, et al. Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J Biomech 2000; 33: 1287-1295.
  • 5Gy6ngy6si M, Yang P, Khorsand A, Glogar D. Longitudinal straightening effect of stents is an additional predictor for major adverse cardiac events. Austrian Wiktor Stent Study Group and European Paragon Stent Investigators. J Am Coll Cardiol 2000; 35: 1580-1589.
  • 6Serruys PW, Ormiston JA, Onuma Y, Regar E, Gonzalo N, Garcia-Garcia HM, et al. A bioabsorbable everolimus-eluting coronary stent system (ABSORB): 2-year outcomes and results from multiple imaging methods. Lancet 2009; 373: 897-910.
  • 7ColomboA, Karvouni E. Biodegradable stents: "fulfilling the mission and stepping away". Circulation 2000; 102: 371-373.
  • 8Ormiston JA, Serruys PW, Regar E, Dudek D, Thuesen L, Webster MW, et al. A bioabsorbable everolimus-eluting coronarystent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet 2008; 371: 899-907.
  • 9Ormiston JA, Webster MW, Armstrong G. First-in-human implantation of a fully bioabsorbable drug-eluting stent: the BVS poly-L-lactic acid everolimus-eluting coronary stent. Catheter Cardiovasc Interv 2007; 69:128-131.
  • 10Serruys PW, Onuma Y, Ormiston JA, de Bruyne B, Regar E, Dudek D, et al. Evaluation of the second generation of a bioresorbable everolimus drug-eluting vascular scaffold for treatment of de novo coronary artery stenosis: six-month clinical and imaging outcomes. Circulation 2010; 122:2301-2312.

同被引文献27

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部