期刊文献+

可适性群集变动的微粒算法

Adaptive dynamic cluster particle swarm optimization
在线阅读 下载PDF
导出
摘要 针对传统粒子群优化(PSO)算法通过单群优化,存在着精度较低、易陷入局部最优解等缺点,提出一种可适性群集变动的微粒算法(ADCPSO)。此算法将依据收敛公式的数值大小,判断粒子群收敛程度,从而动态地调适粒子群群集大小,以提高种群的多样性,有效地避免提早收敛等问题。通过与其他8种粒子群优化算法在CEC'2010标准函数下的仿真测试结果表明:ADCPSO算法凭借着简明算法结构,在寻优能力和算法精度上表现出明显的优势,体现出了较好的应用前景。 The original Particle Swarm Optimization (PSO) through single swarm optimization will cause low precision, easily falls into local minima and other shortcomings. This paper presented a variation on the original PSO algorithm, called Adaptive Dynamic Cluster Particle Swarm Optimization ( ADCPSO). Through multiple-swarm cluster-searching and a criterion that contains a formula, the convergence of particle swarms was measureed, and the cluster size of particle swarms was dynamically adjusted. The method not only can improve the population diversity of particle swarms but also can effectively adjust the matter with premature convergence. ADCPSO was comprehensively evaluated on benchmark functions in CEC'2010, and compared with other eight kinds of particle swarm optimization algorithms. The results show that ADCPSO substantially enhances the performance of convergence speed, global optimality search and solution precision. The paper shows that the ADCPSO with concise algorithm structure has superior ability of optimization and better application prospect.
出处 《计算机应用》 CSCD 北大核心 2013年第A02期91-97,104,共8页 journal of Computer Applications
基金 重庆科技学院第八届大学生科技创新训练计划项目(2013064)
关键词 粒子群优化 动态分群优化 可适性 收敛公式 CEC'2010标准测试方程 Particle Swarm Optimization (PSO) dynamic multi-swarm particle optimizer adaptive convergence formula CEC'2010 benchmark function
作者简介 杨超(1991-),男,湖南株洲人,主要研究方向:计算智能;通信作者电子邮箱youngchaol@sina.com 李宗勳(1987-),男,台湾桃园人,硕士研究生,主要研究方向:计算智能、图像编码; 莊尧棠(1953-),男,台湾彰化人,教授,博士生导师,博士,主要研究方向:计算智能、语音识别。
  • 相关文献

参考文献18

  • 1KENNEDY J, EBERHART R C. Particle swarm optimization[ C]//Proceedings of the 1995 IEEE International Conference on NeuralNetworks. Piscataway: IEEE, 1995,4: 1942 -1948.
  • 2KENNEDY J, EBERHART R C. A discrete binary vereion of theparticle swarm algorithm[ C]// Proceedings of the 1997 IEEE Inter-national Conference on Systems, Man, and Cybernetics. Piscat-away: IEEE, 1997,5: 4104 -4108.
  • 3GIRIRAJKUMAR S M,JAYARAJ D,KISHAN A R. PSO basedtuning of a PID controller for a high performance drilling machine[J]. International Journal of Computer Applications, 2010, 1(1):12-18.
  • 4SHI X H,LIANG Y C, LEE H P, ef al. Particle swarm optimiza-tion-based algorithms for TSP and generalized TSP[ J]. InformationProcessing Letters, 2007, 103: 169 -176.
  • 5SHI Y, EBERHART R C. Parameter selection in particle swarm op-timization[ C]// Proceedings of the 7th International Conference onEvolution Programming, LNCS 1447. Berlin: Springer, 1998: 591-600.
  • 6赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 7JUANG Y T, TUNG S L, CHIU H C. Adaptive fuzzy particle swaimoptimization for global c^>timization of multimodal functions[ J]. Interna-tional Journal of Information Sciences, 2011, 181(20): 4539 -4549.
  • 8SHI Y, EBERHART R C. A modified particle swarm optimizer[ C] //Proceedings of the 1998 IEEE World Congress on Computational Intelli-gence, Evolutionary Computation. Piscataway: IEEE, 1998: 69 -73.
  • 9SHI Y, EBERHART R C. Empirical study of particle swarm optimi-zation[ C]// Proceedings of the 1999 IEEE Congress on EvolutionaryComputation. Piscataway: IEEE, 1999, 3: 1945 -1950.
  • 10PREMALATHA K, NATARAJAN A M. Hybrid PSO and GA forglobal maximizationf J]. International Journal of Open Problems inComputer Science and Mathematics, 2009, 2(4): 597 -608.

二级参考文献8

  • 1Kennedy J,Eberhart R.Particle Swarm Optimization[C]//IEEE International Conference on Neural Networks,1995 Proceedings,1995:1942-1948.
  • 2Shi Y,Eberhart R.Parameter selection in particle swarm optimization[C]//Proceedings of 7th Annual Conference on Evolution Computation,1998:591-601.
  • 3Shi Y,Eberhart R.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation,1999:1945-1950.
  • 4Zheng Yong-ling,Ma Long-hua,Zhang Li-yan,et al.On the convergence analysis and parameter selection in particle swarm optimization[C]//Proceedings of the Second International Conference on Machine Learning and Cybernetics,Xi'an,2-5 November,2003:1802-1807.
  • 5Trelea I C.The particle swarm optimization algorithm:convergence analysis and parameter selection[J].Information Processing Letters,2002:317-325.
  • 6van den Berth F.An analysis of Particle Swarm Optimizers[D].University of Pretoria,2001.
  • 7李宏,唐焕文,郭崇慧.一类进化策略的收敛性分析[J].运筹学学报,1999,3(4):79-83. 被引量:20
  • 8郭崇慧,唐焕文.演化策略的全局收敛性[J].计算数学,2001,23(1):105-110. 被引量:36

共引文献165

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部