摘要
首先证明二次线性Keller映射的齐次部分在某些条件下是线性相关的;其次,给出多项式可线性上三角化的一个等价条件;最后,证明如果(J(F-X))2=0且n≤3,那么F是可线性上三角化的.
In this paper, we first show that the homogeneous parts of the quadratic-linear Keller maps are linearly dependent under certain conditions. Then we give an equivalent statement about the linearly triangularizable polynomials. Finally, we show that a polynomial F is linearly triangularizable if ( J( F - X) ) 2 = 0 and n ≤ 3.
出处
《中国科学院大学学报(中英文)》
CAS
CSCD
北大核心
2014年第1期1-4,共4页
Journal of University of Chinese Academy of Sciences
基金
Supported by National Natural Science Foundation of China(11071247)
关键词
相关性问题
线性上三角化
雅克比猜想
dependent problem
linear triangularizability
Jacobian conjecture
作者简介
Corresponding author, E-mail: sunpegju10@ mails. ucas. ac. cn