期刊文献+

基于PSO-GA算法的多用户OFDM系统资源分配 被引量:5

Resource Allocation for Multiuser OFDM System based on PSO-GA Algorithm
在线阅读 下载PDF
导出
摘要 为了最小化多用户OFDM系统的总发射功率,提出利用改进的粒子群算法与遗传算法相结合的联合算法(PSO—GA)来搜索最优的子载波和比特分配。该算法首先利用改进粒子群算法对系统的子载波和比特分配进行优化。算法运行过程中,当更新后的粒子速度大于最大粒子速度或小于最小粒子速度时,取最大粒子速度与最小粒子速度区间中的一个随机值作为更新的粒子速度。待PSO—GA算法的改进粒子群算法收敛后,将收敛后的种群作为遗传算法的初始种群,再利用遗传算法进行系统的子载波和比特优化分配,进而得出最优解。仿真结果表明,利用该算法比利用遗传算法、粒子群算法与Zhang算法的分配方案使系统需要的总发射功率降低2~10dB。 To minimize the total trmasmitting power in multiuser Orthogonal Frequency Division Multiplexing (OFDM) system, an algorithm combined improved particle swarm optimization algorithm and genetic algorithm(PSO-GA)is proposed to optimize the subcarriers and bit allocation. In the algo- rithm ,the improved particle swarm optimization algorithm is used to optimize the system subcarriers and bit allocation first. When the particle velocity up- dated is bigger than the maximum particle velocity or smaller than the minimum particle velocity, a random value between the maximum particle velocity and the minimum particle velocity is taken as the updating particle velocity. When the algorithm has converged ,take the convergence populations as the initial population of the genetic algorithm. Then,the genetic algorithm is used to optimize the system subearriers and bit allocation again and the optimal solution is obtained. The simulation results show that the proposed algorithm overcomes the genetic algorithm, particle swarm optimization algorithm and Zhang algorithm 2 - 10 dB in transmitted power.
出处 《电视技术》 北大核心 2014年第1期115-119,共5页 Video Engineering
基金 国家自然科学基金资助项目(61071086) 江苏省普通高校研究生科研创新计划项目(CXZZ12_0866) 南通大学自然科学研究项目(11Z061) 南通大学研究生科技创新计划项目(YKC12069)
关键词 正交频分复用 粒子群和遗传联合算法 子载波分配 比特分配 OFDM PSO-GA Algorithm subcarriers allocation bit allocation
作者简介 梅金平(1988-),硕士生,主研移动通信关键技术、认知无线电技术; 张士兵(1962-),博士,电子信息学院副院长,教授,硕士生导师,主要研究方向为宽带数字通信、通信信号处理、认知无线电等; 王海莲(1985-),女,硕士生,主研通信信号处理、认知无线电技术。
  • 相关文献

参考文献16

  • 1COVER T,THOMAS J.Elements of Information Theory[M].NewYork:Wiley,1991.
  • 2ROHLING H,GRUNEID R.Performance comparison of different multi-ple access schemes for the downlink of an OFDM communication system[C]//Proc.IEEE in Vehicular Technology Conference.[S.l.]:IEEEPress,1997:1365-1369.
  • 3PRASAD R.OFDM wireless multimedia communications[M].Boston,USA:Artech House,2000.
  • 4CHEONG Y,CHENG R.Multiuser OFDM with adaptive subcarrier,bitand power allocation[J].IEEE Journal on Selected Areas in Communi-cations,2000,17(10):1747-1758.
  • 5KIVANC D,LIU H.Subcarrier allocation and power control for OFDMA[C]//Proc.Conference Record of the Thirty-Fourth Asilomar Confer-ence.Seattle,WA,USA:IEEE Press,2000:147-151.
  • 6KIVANC D,LI G,LIU H.Computationally efficient bandwidth allocationand power control for OFDMA[J].IEEE Trans.Wireless Communica-tions,2003,2(6):1150-1158.
  • 7ZHANG G.Subcarrier and bit allocation for real-time services in multi-user OFDM systems[C]//Proc.IEEE International Conference.[S.1.]:IEEE Press,2004:2985-2989.
  • 8王永学,陈芳炯,韦岗.基于遗传算法的多用户OFDM系统资源分配[J].华南理工大学学报(自然科学版),2005,33(11):61-65. 被引量:7
  • 9SADR S,ANPALAGAN A,RAAHEMIFAR K.Radio resource allocationalgorithms for the downlink of multiuser OFDM communication systems[J].IEEE Commun.Surveys & Tutorials,2009,11(3):92-106.
  • 10KSAIRI N,BIANCHI P,CIBLAT P,et al.Resource allocation for down-link cellular OFDMA systems-part I optimal allocation[J].IEEE Trans.Signal Processing,2010,58(2):720-734.

二级参考文献14

  • 1Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of Int'l Conf on Neural Networks [C]. Piscataway: IEEE Press, 1995. 1942-1948.
  • 2Eberhart R, Kennedy J. A new optimizer using particle swarm theory [A]. Proc of Int'l Symposium on Micro Machine and Human Science [C]. Piscataway: IEEE Service Center, 1995. 39-43.
  • 3Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization [A].In: Furuhashi T,Mckay B,eds. Proc Congress on Evolutionary Computation [C]. Piscataway: IEEE Press, 2001.
  • 4Lovbjerg M, Rasmussen T K, Krink T. Hybrid particle swarm optimiser with breeding and subpopulations [A]. In: Spector L,eds. Proc of Genetic and Evolutionary Computation Conference [C]. San Fransisco: Morgan Kaufmann Publishers Inc, 2001. 469-476.
  • 5Carlisle A, Dozier G. Adapting particle swarm optimization to dynamic environments [A]. In: Arabnia H R,eds. Proc of Int'l Conf on Artificial Intelligence [C]. Las Vegas: CSREA Press, 2000. 429-434.
  • 6Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems [A]. In: Panda B,eds. Proc of ACM Symposium on Applied Computing [C]. Boston: ACM Press, 2002. 603-607.
  • 7Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Trans on Evolutionary Computation, 2002, 6(1): 58-73.
  • 8Zhang Guo-dong . Subcarrier and bit allocation for realtime services in multiuser OFDM systems [ A]. [ s. n. ].2004 IEEE International Conference on Communications[C]. Paris, France: [ s. n. ]. 2004 ( Vol. 5 ). 2 985 -2989.
  • 9Man K F, Tang K S, Kwong S. Genetic algorithms: Concepts and applications [ J ]. IEEE Transactions on Industrial Electronics, 1996,43 (5) :519 - 534.
  • 10Khun H W. The Hungarian method for the assignment problem [J]. Naval Research Logistics Quarterly, 1955,2(1) :83 -97.

共引文献403

同被引文献48

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部