期刊文献+

基于小波分析的结构动力可靠度估计 被引量:5

Estimations of the reliability of structures based on wavelet transform
在线阅读 下载PDF
导出
摘要 利用小波分析估计的地震动局部谱,采用虚拟激励法求得了线性结构非平稳随机响应,结合基于首超破坏准则的几种动力可靠度表达式,对结构的动力可靠度进行了讨论,并与平稳响应的情况进行了比较。 In this paper, local spectra of earthquake ground motions estimated by wavelet trans form and pseudo exciation method are adopted to acquire the solutions for linear structural nonstationary random response, and several formulations of dynamic reliability based on the first-excursion failure criterion are employed to discuss the structural dynamic reliability. The comparison between stationary results and nonstationary ones is also carried out.
出处 《世界地震工程》 CSCD 2000年第4期70-77,共8页 World Earthquake Engineering
关键词 小波分析 首超破坏 动力可靠度 虚拟激励法 线性结构 wavelet transform first-excursion failure dynamic reliabilt
  • 相关文献

参考文献9

  • 1VanmarckeEH,LaiSSP.StrongmotiondurationandRMSamplitudeofearthquakerecords[J].[13]BSSA,1980,7(4):7,No.4:1293-1307.
  • 2ParkYJ,AngAH-S.Amechanisticseismicdamagemodelforreinforcedconcrete[J].J.Struct.Eng.ASCE,1983,111:722-739.
  • 3刘伯权.[D].重庆:重庆建筑大学,1994.
  • 4曹晖,赖明,白绍良.基于小波分析的线性结构随机响应求解[J].重庆建筑大学学报,2000,22(z1):47-52. 被引量:2
  • 5LinJHetal.Structuralresponsestonon-uniformlymodulatedevolutionaryrandomvibration(II)[J].J.Appl.Mech.ASME,1972,39:733-738.
  • 6YangJN,ShinozukaM.Onthefirst-excursionprobabilityinstationarynarrow-bandrandomvibration(II).J.Appl.Mech.ASME,1972,.39:733-738.
  • 7WuWF.Envelopecrossingrateandfirstpassageprobability[A].The5thinternationalconferenceonstructuralsafetyandreliability[C].1989:1271-1278.
  • 8CorotisRB,VanmarckeEH,CornellCA.Firstpassageofnonstationaryrandomprocess[J].J.Eng.Mech.ASCE,1972,98,(2):401-414.
  • 9殴进萍 瞿伟廉.非线性多自由度体系在平稳随机荷载作用下的动力可靠性分析[J].地震工程与工程振动,1984,4(1).

二级参考文献13

  • 1[2]Caughey T K and Stumpf H J. Transient Response of Dynamic S ystem Under Random Excitation[J]. J. Appl. Mech. ASME, 1961, 28(E):563-566 [ ZK)〗
  • 2[3]Lin Y K. Application of Nonstationary Shot Noise i n the Study of System Response to a Class of Nonstationary Excitations[ J]. J. Appl. Mech. ASME, 1963,30:555-558
  • 3[4]Barnos ki R L and Maurer J R. Mean-square Response of Simple Mechanical Systems to Nonstationary Random Excitation[J]. J. Appl. Mech. ASME, 1969:221-227
  • 4[5] Hammond J K. On the Response of Single and Multidegree of Freedom Sy stems to Nonstationary Random Excitations[J]. J. Sound and Vib., 1968, Vo l.7, No. 3:417-430
  • 5[6]Shinozuka M. Random Process w ith Evolutionary Power[J]. J. Eng. Mech. ASCE, 1970,Vol.96, EM4:543-545
  • 6[7]Corotis R B and Marshall T A. Oscillator Response to Modulated Random Excitation[J]. J. Eng. Mech. ASCE, 1977, Vol.103, EM4:50 1-513
  • 7[8]Gasparini D A. Response of MDOF Systems to Nonstationary Random Excitation[J].J. Eng. Mech. ASCE, 1979, Vol.105, E M1:13-27
  • 8[9]Gasparini D A and DebChaudhury A. Dynami c Response to Nonstationary Nonwhite Excitation[J]. J. Eng. Mech. ASCE, 19 80, Vol.106, EM6:1233-1248
  • 9[10]ToCWS. Nonstation ary Random Response of a Multi-degree-of-freedom System by the Theory of E volutionary Spectra[J]. J. Sound and Vib. ,1982, Vol.83(2):273-291
  • 10[11]Borino G, Di Paola M and Muscolino G. Non-stationary Sp ectral Moments of Base Excited MDOF Systems[J]. EESD, 1988, Vol.16:745-7 56

共引文献3

同被引文献106

引证文献5

二级引证文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部