期刊文献+

粒径可控纳米LiFePO4/C的制备及其电化学性能研究

Preparation of the Particle Size Controllable LiFePO_4/C and Its Electrochemical Profile Characterization
在线阅读 下载PDF
导出
摘要 LiFePO4电极的倍率特性与材料的粒度和电子导电性有很大关系.采用共沉淀方法,调控预处理温度,将3种不同尺寸的FePO4前驱体通过表面修饰对-羟基苯甲酸的聚合物,可合成不同尺度的LiFePO4/C材料,分别为80 nm、200nm和1μm.纳米尺度LiFePO4-a/C电极,30C放电比容量达到了100 mAh·g-1,而微米级LiFePO4-c/C电极放电比容量仅为54mAh·g-1.均一碳包覆的LiFePO4/C电极表现出强抗氧化性,不仅提高其导电性,还可防止材料氧化. We adopted an effective route to prepare the particle size controllable core-shell structure carbon-coated LiFePO 4 from different sized FePO4 precursors, varying from 80 nm, 200 nm and 1 μm by an in situ polymerization method integrated with a surface modification technology. The discharge capacities of the three sized LiFePO4 /C are, respectively, 162 mAh·g^-1, 142 mAh·g^-1 and 92 mAh·g^-1at 0.1C rate. The nano-sized LiFePO4-a/C(80 nm) delivers a discharge capacity at large as 100 mAh·g^-1at even at 30C, while the macroscopic LiFePO4-c/C(1 μm) exhibits a much poorer discharge capacity of 54 mAh·g^-1under the same current density. The carbon coated LiFePO4(LiFePO4 /C) also shows good chemical stability after the exposure to air atmosphere, in which the uniform carbon layer could prevent the LiFePO4 from reacting with H2 O and O2.
机构地区 复旦大学化学系
出处 《电化学》 CAS CSCD 北大核心 2013年第6期550-557,共8页 Journal of Electrochemistry
基金 国家自然科学基金重点项目(No.20925312)资助
关键词 LIFEPO4 锂离子电池 正极材料 原位合成 LiFePO 4 lithium-ion batteries cathode materials in-situ synthesis
作者简介 通讯作者,Tel:(86—21)51630318,E-mail:yyxia@fudan.edu.cn
  • 相关文献

参考文献27

  • 1Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation [J]. Journal of the Electrochemical Society, 1997, 144 (8): 2581-2586.
  • 2Lu Z G, Cheng H, Lo M F, et al. Pulsed laser deposition and electrochemical characterization of LiFePO4-Ag com- posite thin films[J]. Advanced Functional Materials, 2007, 17(18): 3885-3896.
  • 3Huang Y H, Goodenough J B. High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers[J]. Chemistry of Materials, 2008, 20(23): 7237- 7241.
  • 4Prosini P P, D Zane, Pasquali M. Improved electrochemi- cal performance ofa LiFePO4-based composite cathode[J]. Electrochimica Acta, 2001, 46(23): 3517-3523.
  • 5Dominko R, Bele M, Gaberscek M, et al. Impact of the carbon coating thickness on the electrochemical perfor- mance of LiFePO4/C composites[J]. Journal of the Electro- chemical Society, 2005, 152(3): A607-A610.
  • 6Shin H C, W I Cho, Jang H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithi- um-ion secondary batteries[J]. Journal of Power Sources, 2006, 159(2): 1383-1388.
  • 7Amin R, Lin C T, Peng J B, et al. Silicon-doped LiFePO single crystals: Growth, conductivity behavior, and diffu sivity[J]_Advanced Functional Materials, 2009, 19(11) 1697-1704.
  • 8Meethong N, Kao Y H, Speakman, S A, et al. Aliovalent substitutions in olivine lithium iron phosphate and impact on structure and properties[J]. Advanced Functional Mate- rials, 2009, 19(7): 1060-1070.
  • 9Chung S Y, Bloking J T, Chiang Y M. Electronically con- ductive phospho-olivines as lithium storage electrodes [J]. Nature Materials, 2002, 1(2): 123-128.
  • 10Liu H, Cao Q, Fu L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8 (10): 1553- 1557.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部