期刊文献+

基于邻域分析的海洋遥感图像舰船检测方法 被引量:7

A method for ship detection based on neighborhood characteristics in remote sensing image
在线阅读 下载PDF
导出
摘要 针对高分辨遥感图像中目标背景为复杂多变的海面,提出一种基于邻域特性分析的海面舰船检测方法.根据邻域窗口的均值方差积特性,初分割消除大部分海面背景;再通过后续邻域均值滤波消减海面分散杂波,利用形态学处理进一步消除杂波干扰,确定目标候选区域;最后结合舰船相关特征(长宽比和矩形度等)对目标进行验证,排除虚警,输出最终检测结果.经对大量不同海面背景进行验证表明,该方法适应性强,稳定性好,检测率高. A ship deteclion method is proposed based on the analysis of neighborhood features for high-resolulion sea surface remote sensing images with complex background. According to the variance of neighborhood window, the ini- tial segmentation eliminates most of the background of the sea surface, and then a filter of neighborhood average is used to subtrac| the dispersion of sea cluner. Afterward, morphological processing is utilized to fimhcr eliminale clutter and determine the target candidate region. Finally, ship characteristics (aspect ratio, rectangular degree, etc. ) are combined to verify the target detected, eliminate false alarms, and output the final tesl results. Tcslcd through a large number of experiments with different sea backgrounds, the results show that the proposed method is of good flexibility, stability, and detection rate.
出处 《深圳大学学报(理工版)》 EI CAS 北大核心 2013年第6期584-591,共8页 Journal of Shenzhen University(Science and Engineering)
基金 国家自然科学基金资助项目(61071206) 国防预研基金资助项目(9140***9302)~~
关键词 海洋遥感图像 舰船检测 邻域特性分析 阈值分割 形态学处理 目标判决 ocean remote sensing image ship detection neighborhood characteristic: analysis threshold segmenta-tion morphological processing target judgment
作者简介 龚志成(1988-),男(汉族),湖南省常德市人,深圳大学硕士研究生.E-mail:riky_cheng@qq.com
  • 相关文献

参考文献10

二级参考文献80

共引文献191

同被引文献63

  • 1汪闽,骆剑承,明冬萍.高分辨率遥感影像上基于形状特征的船舶提取[J].武汉大学学报(信息科学版),2005,30(8):685-688. 被引量:29
  • 2桑红石,傅勇,张天序,刘云生.一种适合硬件实现的多值图像连通域标记算法[J].华中科技大学学报(自然科学版),2005,33(9):5-8. 被引量:5
  • 3高贵,匡纲要,李德仁.高分辨率SAR图像分割及目标特征提取[J].宇航学报,2006,27(2):238-244. 被引量:18
  • 4张风丽,张磊,吴炳方.欧盟船舶遥感探测技术与系统研究的进展[J].遥感学报,2007,11(4):552-562. 被引量:24
  • 5Hou Biao, Chen Xing-zhong, and Jiao Li-cheng. Multilayer CFAR detection of ship targets in very high resolution SAR images[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 12(4): 811-815.
  • 6Pasquale I, Martin C, Raffaella G, et al.. Ship-detection in SAR imagery using low pulse repetition frequency radar[C]. 10th European Conference on Synthetic Aperture Radar, Berlin, 2014: 1-4.
  • 7Wei Ju-jie, Li Ping-xiang, and Yang jie. A new automatic ship detection method using L-band polarimetric SAR imagery[J]. IEEE Journal o/Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(4): 1383-1393.
  • 8Jubelin G and Khenchaf A. Multiscale algorithm for ship detection in mid, high and very high resolution optical imagery[C]. IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Quebec City, 2014: 2289-2292.
  • 9Song Zhi-na, Sui Hai-gang, and Wang Yu-jie. Automatic ship detection for optical satellite images based on visual attention model and LBP[C]. IEEE Workshop on Electronics, Computer and Applications, Ottawa, 2014: 722-725.
  • 10Liu Ge, Zhang Ya-sen, Zheng Xin-wei, et al.. A new method on inshore ship detection in high-resolution satellite images using shape and context information[J]. IEEE Geoscience and Remote Sensing Letters, 2014, 11(3): 617-621.

引证文献7

二级引证文献70

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部