期刊文献+

粒子群优化的隐空间光滑支持向量机算法 被引量:2

A Hidden Space Smooth Support Vector Machine with Particle Swarm Optimization
在线阅读 下载PDF
导出
摘要 针对隐空间支持向量机求解约束凸二次规划存在训练时间长、计算复杂的问题,提出粒子群优化的隐空间光滑支持向量机算法(PSO-HSSSVM)。该算法通过隐函数将训练样本映射至隐空间,且对隐函数没有正定性限制;在隐空间中以熵函数近似松弛向量的加函数,导出光滑可微的无约束凸二次规划;引入共轭梯度法求解光滑模型,并采用粒子群优化算法选取最优参数。数值实验表明,PSO-HSSSVM算法可拓宽光滑支持向量机的核函数范围,而其训练精度和训练时间与光滑支持向量机的相当;PSO-HSSSVM算法可将隐空间支持向量机的训练精度提高2.14%,而其训练时间仅为隐空间支持向量机的9.5%。 A hidden space smooth support vector machine with particle swarm optimization (PSO- HSSSVM) algorithm is proposed to solve problems of long training time and computing complex in using hidden space support vector machine (HSSVM) to solve constrained convex quadratic programs. The proposed algorithm transforms the input data to a hidden space using a hidden function, and has no any restriction on the positive definity of the hidden function. The entropy function is employed to approximate the plus function of the slack vector, and a smooth differentiable unconstrained convex quadratic program is derived. The conjugate gradient (CG) algorithm is used to solve the smooth model, and the particle swarm optimization (PSO) algorithm is used to give the optimal parameters. Experiments show that the PSO-HSSSVM enlarges the usable kernels of smooth support vector machine (SSVM), and its accuracy and training time are similar to those of SSVM; The PSO-HSSSVM improves the accuracy of HSSVM by 2.14%, and the training time is only 9.5% that of HSSVM.
作者 梁锦锦 吴德
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2013年第12期38-42,共5页 Journal of Xi'an Jiaotong University
基金 国家自然科学基金资助项目(61373174) 陕西省教育厅专项科研计划资助项目(2010JK773) 西安石油大学博士专项科研基金资助项目(YS29030903)
关键词 隐空间 支持向量机 熵函数 粒子群优化 共轭梯度法 hidden space support vector machine~ entropy function particle swarm optimiza-tion~ conjugate graduate
作者简介 梁锦锦(1983-),女,博士,讲师.
  • 相关文献

参考文献12

  • 1VAPNIK V N. An overview of statistical learning the- ory [J]. IEEE Transactions on Neural Networks, 1999, 10(3): 988-999.
  • 2YE Qixiang, HAN Zhenjun, JIAO Jianbin, et al. Hu- man detection in images via piecewise linear supportvector machines [J]. IEEE Transactions on Image Processing, 2013, 22(2): 778-789.
  • 3DING Shifei, QI Bingjuan. Research of granular sup- port vector machine [J]. Artificial Intelligence Re- view, 2012, 38(1); 1-7.
  • 4PENG Xinjun, WANG Yifei, XU Dong. Structural twin parametric-margin support vector machine for binary classification [J]. Knowledge-Based Systems, 2013, 49(1) : 63-72.
  • 5ZHANG Li, ZHOU Weida, JIAO Licheng. Hidden space support vector machines [J]. IEEE Transactions on Neural Networks, 2004, 15(6): 1424-1434.
  • 6王玲,薄列峰,刘芳,焦李成.最小二乘隐空间支持向量机[J].计算机学报,2005,28(8):1302-1307. 被引量:12
  • 7ZHANG Li, WANG Bangjun, LI Fanzhang, et al. Sup- port vector novelty detection in hidden space [J]. Jour- nal of Computational Information Systems, 2011, 7 (15) : 5581-5590.
  • 8CHENG Jun, XIE Can, BIAN Wei, et al. Feature fu- sion for 3D hand gesture recognition by learning a shared hidden space [J]. Pattern Recognition Letters, 2012, 33(4): 476-484.
  • 9LEE Y J, MANGASARIAN O L. SSVM: a smooth support vector machine for classification [J]. Compu- tational Optimization and Applications, 2001, 22 (1) : 5-21.
  • 10Chuandong Qin,Sanyang Liu.Fuzzy smooth support vector machine with different smooth functions[J].Journal of Systems Engineering and Electronics,2012,23(3):460-466. 被引量:5

二级参考文献28

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2熊金志,胡金莲,袁华强,胡天明,李广明.一类光滑支持向量机新函数的研究[J].电子学报,2007,35(2):366-370. 被引量:42
  • 3Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer Verlag, 1995.
  • 4Platt J. Sequential minimal optimization: a fast algorithm for train- ing support vector machines//Advances in Kernel Methods-Support Vector Learning. Massachusetts: MIT Press, 1999 : 185.
  • 5Mangasarian O L, Musicant D R. Making large-scale support vec- tor machine learning practical// Advances in Kernel Methods-Sup- port Vector Learning. Massachusetts: MIT Press, 1999:169.
  • 6Mangasarian 0 L, Musicant D R. Successive overrelaxation for support vector machines. IEEE Trans Neural Networks, 1999, 10 (5) : 1032.
  • 7Suykens J A K, Vandewalle J. Least squares support vector ma- chine classifiers. Neural Process Lett, 1999, 9 (3) : 293.
  • 8Lee Y J, Mangasarian 0 L. SSVM: a smooth support vector ma- chine for classification. Comput Optim Appl, 2001, 20( 1 ) : 5.
  • 9Yuan Y, Fan W, Pu D. Spline function smooth support vector ma- chine for classification. J lnd Manage Optim, 2007, 3 (3) : 529.
  • 10Mangasarian 0 L. Generalized support vector machines // Ad- vances in Large Margin Classifiers. Massachusetts: MIT Press, 2000:135.

共引文献24

同被引文献17

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部