期刊文献+

基于色彩相关性的彩色图像清晰度评价算法 被引量:4

Image definition evaluation algorithm based on color relativity
在线阅读 下载PDF
导出
摘要 数字图像的清晰度评价对于相机自动对焦而言至关重要。针对现有清晰度评价函数的不足之处,提出了一种针对彩色数字图像的空域清晰度评价算法。此算法利用像素三刺激值之间的色差相关性判定像素点的色彩,建立清晰度色差因子;运用非线性函数提高了像素点的梯度增益系数,使该评价函数对特殊条件下图像的清晰度判定更敏感。实验证明,该评价函数在评价一般自然图像清晰度时比传统评价算法更为敏感;在典型评价函数评价特殊目标图像失效时,该算法依然具有良好的鲁棒性;此算法计算量较小,执行效率高,易于硬件实现。 Definition evaluation function of digital image plays an important role in digital camera auto-focus. Due to the existing definition evaluation functions are of some marked disadvantages, a spatial domain evaluation algorithm for digital color image was proposed. The colorful property of each pixel was judged and definition chromatic difference parameters was created by using chromatic difference between their tri-stimulus values. Besides,nonlinear function was used to improve the gradient coefficient of each pixel which made the evaluation function be more sensitive to some images in extreme cases. Experimental results show the superiority of our algorithm over the most of existing evaluation algorithms in dealing with natural images. And our method also is of a good ability of robustness as well as reducing calculation complexity and it can be easily achieved on hardware.
出处 《红外与激光工程》 EI CSCD 北大核心 2013年第11期3132-3136,共5页 Infrared and Laser Engineering
基金 国家自然科学基金(No.61201376)
关键词 图像清晰度 自动对焦 色彩相关性 评价函数 梯度 image definition auto focus color relativity evaluation function gradient
作者简介 郭惠楠(1985-),男,博士生,主要从事图像与视频信息处理方面的研究。Email:s09068@opt.cn 导师简介:曹剑中(1969-),男,研究员,博士生导师,主要从事航空相机成像系统方面的工作。Email:cjz@opt.ac.cn
  • 相关文献

参考文献4

二级参考文献18

  • 1朱孔凤,姜威,王端芳,张进,周贤.一种新的图像清晰度评价函数[J].红外与激光工程,2005,34(4):464-468. 被引量:67
  • 2袁珂,徐蔚鸿.基于图像清晰度评价的摄像头辅助调焦系统[J].光电工程,2006,33(1):141-144. 被引量:11
  • 3王勇,谭毅华,田金文.一种新的图像清晰度评价函数[J].武汉理工大学学报,2007,29(3):124-126. 被引量:27
  • 4黄剑琪.基于频谱分析的数字对焦技术的研究:硕士学位论文[M].浙江大学,2001.21-31.
  • 5MARZILIANO P, DUFAUX F, WINKLER S.A no-reference perceptual blur metric[C]//Proc of IEEE Int Conf Image Proc, 2002 : 57-60.
  • 6CAVIEDES J,GURBUZ S.No-reference sharpness metric based onLocal edge Kurtosis[C]//Proc of IEEE Int Conf Image Proc,2002:61-64.
  • 7CHERN N K,Neow P A,ANG M H Jr,et al.Practical issues in pixel-based auto-focusing for machine vision [C]//Proceedings of the 2001 IEEE,Internationai Conference on Robotics and Automation,2001:2791-2796.
  • 8ESKICIOGLU A M, FISHER P S. Image quality measures and their performance [ J ]. IEEE Transactions on Communications, 1995,43 ( 12 ) : 2959-2965.
  • 9SUBBARAO M, CHOI T S, NIKZAD A. Focusing techniques[ J]. Optical Engineering, 1993,32( 11 ) :2824-2836.
  • 10CHERN N K, PO0 A N, MARCELO H, et al. Practical Issues in Pixel-based Auto-focusing for Machine Vision [ C ]// Proceedings of the 2001 IEEE, International Conference on Robotics and Automation. Seoul, Korea: [ s. n. ] , 2001 : 2791-2796.

共引文献185

同被引文献46

引证文献4

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部