期刊文献+

基于光纤锥视觉的植物叶片脉络提取研究 被引量:1

Research on Extracting Vein of Plant Leaf Based on Optical Fiber Taper Vision
在线阅读 下载PDF
导出
摘要 提出了一种基于光纤锥视觉的植物叶片检测方法,通过光纤锥与CCD传感器耦合成像获取植物叶片图像。由于叶脉复杂多变的特点,因此采用3种叶脉提取的方法,即迭代阈值法、一维信息熵法和传统的自适应阈值分割法,并用这3种方法分别对两种树叶进行叶片脉络图像提取。利用K-均值算法,针对叶片脉络图像的7个不变矩信息进行聚类,分析这3种阈值方法的优劣。实验结果表明,这3种方法都可以提取出比较理想的叶脉络和叶边缘信息,但迭代阈值法和自适应阈值法更有利于植物物种识别。 A strategy based on the optical fiber taper vision for plant leaf detection was presented in this paper , the ima-ges of plant leaves were captured by the optical fiber taper coupling with CCD .Because of the complexity of leaf vein , three techniques for extracting leaf vein were employed , they were iterative threshold , one-dimensional information entro-py detection , and traditional Otsu's adaptive threshold segmentation , and the three methods were applied to extract vein images of two kinds of plant leaves respectively .K-means clustering algorithm was used to classify two kinds of plant leaves based on the seven invariant moments of the vein images , to analysis the quality of the three threshold methods . The results show that all the three segmental approaches could achieve effective leaf vein and edge details , and the vein images obtained through iterative threshold and Otsu's adaptive threshold segmentation are more effective in plant species classification .
出处 《农机化研究》 北大核心 2013年第12期10-14,共5页 Journal of Agricultural Mechanization Research
基金 国家自然科学基金项目(51176016)
关键词 叶脉提取 光纤锥 迭代阈值 信息熵 K-均值聚类算法 vein extraction optical fiber taper iterative threshold information entropy K-means clustering algorithm
作者简介 作者简介:陈树越(1963-),男,河北定州人,教授,博士,(E—mail)Csyue2000@yahoo.cn。
  • 相关文献

参考文献7

  • 1Park J, Hwang E, Nam Y Utilizing venation features for effi- cient leaf image retrieval [ J ]. The Journal of Systems and Software ,2008, 81 ( 1 ) :71-82.
  • 2Lin Huang, Peng He. Machine recognition for broad-leaved trees based on synthetic features of leaves using probabilistic neural network [ C ]//Computer Science and Software Engi- neering. Piscataway : IEEE Computer Society, 2008 : 871 -877.
  • 3李云峰,曹渝昆,朱庆生.基于主动轮廓技术的植物叶图像提取方法[J].南京林业大学学报(自然科学版),2009,33(3):146-150. 被引量:1
  • 4Hong Fu, Zheru Chi. A two-stage approach for leaf vein ex- traction [ C ]//Neural Networks and Signal Processing. Piscataway : IEEE Computer Society ,2003:208-211.
  • 5Yan Li,Zheru Chi, David D Feng. Leaf Vein extraction using independent component analysis [ J ]. IEEE International Con- ference on Systems, Man and Cybernetics, 2007 ( 10 ) : 4752 - 4756.
  • 6刘元永,罗晓曙,陈全斌,吴雷.多重分形谱在叶片图像处理中的应用[J].计算机工程与应用,2008,44(28):190-192. 被引量:15
  • 7赵卓英,孙明,姜伟杰.基于细胞神经网络的植物叶片图像中叶脉的提取[J].农机化研究,2009,31(4):168-171. 被引量:7

二级参考文献26

  • 1雷国伟,吕迎阳,纪安妮,吴孙桃,郭东辉.图像特征的CNN提取方法及其应用[J].计算机工程与应用,2004,40(14):204-206. 被引量:6
  • 2王晓峰,黄德双,杜吉祥,张国军.叶片图像特征提取与识别技术的研究[J].计算机工程与应用,2006,42(3):190-193. 被引量:115
  • 3马文杰,贺立源,刘华波,李翠英.成像环境因素对烟叶图像采集结果的影响及校正研究[J].中国农业科学,2006,39(12):2615-2620. 被引量:33
  • 4Fu H,Chi Z.Combined thresholding and neural network approach for vein pattern extraction from leaf images[J].IEE Proc-Vis,Image Signal Process,2006,153(6) : 881-892.
  • 5Madelbrot B B.The fractal geometry of nature[M].New York:Freeman, 1982.
  • 6陈慧平,陈慧选.多重分形谱在非线性网络中的应用[C]//2006全国复杂网络学术会议(CCCN’06),武汉:华中师范大学,2006:348.
  • 7天敏公司.10MOONS SDK-2000 Video Cqpture[OL].[2008-01].http://www.10moons.com.
  • 8广西科学院广西植物所.广西植物志[M].南宁:广西科学技术出版社.1991:680-690.
  • 9Chua L O Yang L. Cellular neural networks application [ J]. IEEE Transactions on Circuits and Systems, 1988, 35 (10) :1273 - 1290.
  • 10Wang D, Kerbyson D J. Realistic image synthesis of plant structures for genetic analysis[ J]. Image and Vision Computing, 2001, 19:517 -522.

共引文献20

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部