期刊文献+

基于脑-机接口的智能车控制算法研究与实现 被引量:1

Research and Implementation of Intelligent Vehicle Control Algorithm Based on Brain-Computer Interface
在线阅读 下载PDF
导出
摘要 利用单通道脑电传感器mindset采集脑电波原始数据,并利用小波变换对采集的脑电信号进行分解,以小波变换系数为特征提取方法,首次从脑波节律能量的角度判断大脑注意力状态;另外,通过感知机准则算法,提出以系数加子带能量为特征的新方法,实现以脑波数据检测眼睛眨动情况。通过将大脑注意力状态以及眼睛眨动强度发送给智能车,实现对其速度和方向的精确控制。此算法为智能车控制提供了一种真正的意念控制方法。 With the development of Brain-Computer Interface (BCI),mind control it will become an inevitable development tendency in area of control.In this paper,we acquire raw EEG data by one-channel EEG sensor and decompose them into different frequency ranges with wavelet transform.Then we extract features of each frequency through wavelet transform coefficients and distinguish the state of brain attention in term of brainwave rhythm energy.Besides,by perceptron approach,we propose a new method of extracting feature with fusion of coefficient and subband energy,in order to detect eye blink from EEG data.By sending the attention and strength of eye blink to intelligent vehicle,we can accurately control the speed and direction.The algorithm we propose provides a true way of mind control for intelligent vehicle control.
出处 《太原理工大学学报》 CAS 北大核心 2013年第6期739-743,共5页 Journal of Taiyuan University of Technology
基金 国家自然科学基金资助项目(61170136 61070077)
关键词 脑-机接口 小波变换系数 感知机准则 子带能量 脑电图 意念控制 brain-computer interface wavelet transform coefficients perceptron approach sub-band energy electroencephalogram mind control
作者简介 陈东伟(1982-),男,山西太原人,讲师,博士,主要从事智能信息处理,脑信息学,嵌入式系统,(Tel)15989763155
  • 相关文献

参考文献15

  • 1Liao L D,Lin C T,McDowell K.et al.Biosensor technologies for augmented brain-computer interfaces in the next decades[J].Proceedings of the IEEE,2012,100:1553-1566.
  • 2Wolpaw J R,Birbaumer N,Heetderks W J,et al.Brain-computer interface technology:A review of the first international meeting[J].IEEE Transactions on Rehabilitation Engineering,2000,8 (2):222-225.
  • 3郑晓明,杨帮华,陆文宇,何美燕.基于LabWindows/CVI与Matlab混编的在线BCI系统[J].计算机应用与软件,2012,29(5):16-19. 被引量:1
  • 4Isabella Gonzalez,Timeer Amin,Reed Jones,Reed Jones.Characterization of EEG Signals from NeuroSky MindSet Device[J/OL].http://cnx.org/content/col11392/1.1/2011-12.
  • 5M Murugappan,M Rizon,R Nagarajan,S Yaacob.Inferring of human emotional states using multichannel EEG[J].European Journal of Scientific Research,2010,48(2):281-299.
  • 6宾光宇,张雅静,高小榕.相位同步方法用于稳态视觉诱发电位的测量[J].清华大学学报(自然科学版),2008,48(9):1507-1510. 被引量:3
  • 7Arnaud Delorme,Scott Makeig.The EEGLAB Tutorial[J/OL].2010.7 http://sccn.ucsd.edu/wiki/EEGLAB_TUTORI-AL_OUTLINE/2010-07.
  • 8Liu ChunLin.A Tutorial of the Wavelet Transform[J/OL].http://disp.ee:ntu.edu.tw/tutorial/WaveletTutorial.pdf/2010-02.
  • 9Dipti Upadhyay.Classification of EEG signals under different mental tasks using wavelet transform and neural network with one step secant algorithm[J].International Journal of Scientific Engineering and Technology,2013,2(4):256-259.
  • 10郑常宝,段晓波,李晓明.用Matlab小波包求功率频带分解规律[J].电测与仪表,2010,47(6):22-24. 被引量:11

二级参考文献57

共引文献29

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部