期刊文献+

最大熵与交叉熵在平面磨削颤振预测中的研究 被引量:3

A method of surface grinding chatter predicting based on maximum entropy and cross entropy
在线阅读 下载PDF
导出
摘要 为了避免平面磨削加工过程中出现颤振,提出一种基于最大熵与交叉熵的平面磨削颤振预测方法。该方法采用最大信息熵对平面磨削加工过程中振动信号的概率密度进行估计,获得加工过程中振动信号的最大熵概率密度分布,采用交叉熵分析在不同磨削状态时振动信号最大熵概率密度分布的变化,通过交叉熵值对平面磨削加工过程中的颤振进行预测。为了验证该方法的有效性,在平面磨床实验平台上采用变磨削深度的加工方式趋于颤振,根据实验中测量的振动信号,比较了趋于颤振时砂轮主轴部位和工作台部位振动信号的特点,选择工作台部位的振动信号为研究对象,采用该方法对磨削加工分别处于顺磨、逆磨以及混合磨削时工作台不同方向的振动信号进行分析,实验结果表明该方法在平面磨削颤振预测中是有效的。 To study how to avoid chatter in surface grinding process,the maximum entropy principle and cross entropy are developed based on information theroy to predict chatter.In the methods,firstly,maximum entropy principle is conducted to estimate probability density of vibration signals which are detected in the surface grinding process.Then,cross entropy is undertaken to quantify changes in maximum entropy probability density,and is used to predict grinding chatter in surface grinding process.In this paper,in order to verify the validity of the methods,grinding experimental platform is built which mainly include the experiment of varying grinding depths that tend to grinding chatter state.Vibration signals of worktable is selected as object of study,according to characteristic of the vibration signals measured in the experiment.The methods of the paper is used to analysize vibration signals of down-grinding,up-grinding,and mixed grinding in different directions.The experimental results show that values of the methods are increased,and the methods as a predicting index of grinding chatter is valid.
出处 《振动工程学报》 EI CSCD 北大核心 2013年第5期786-791,共6页 Journal of Vibration Engineering
基金 国家科技重大专项资助项目(2011zx04016-021)
关键词 磨削颤振 平面磨削 概率密度 最大信息熵 交叉熵 grinding chatter surface grinding probability density maximum entropy cross entropy
作者简介 董新峰(1985-),男,博士研究生.电话:15216767505.
  • 相关文献

参考文献13

  • 1Yao Zhehe, Mei Deqing, Chen Zichen. Ondine chatter detection and identification based on wavelet and sup- port vector machine[J]. Journal of Materials Process- ing Technology, 2010, (210) .713--719.
  • 2Mei D Q, Li X, Chen Z C. Prediction of cutting chat- ter based on hidden markov model[J], Key Engineer- ing Material, 2007,(353-358):2 712--2 715.
  • 3Bediaga I, Mu noa J, Hernandez J. An automatic spindle speed selection strategy to obtain stability in high-speed milling[J]. International Journal of Ma- chine Tools and Manufacture, 2009, (49) 384--394.
  • 4Messaoud A, Weihs C. Monitoring a deep bole drilling process by nonlinear time series modeling[J]. Journal of Sound and Vibration, 2009,(321) :620--630.
  • 5Tansel I N, Wang X, Chen P, et al. Transformations in machining. Part 2. Evaluation of machining quality and detection of chatter in turning by using s-transfor- mation[J]. International Journal of Machine Tools and Manufacture, 2006, (46) . 43--50.
  • 6Gonzalez-Brambila O, Rubio E, Jauregui J C. Chatte- ring detection in cylindrical grinding processes using the wavelet transform[J]. International Journal of Ma- chine Tools and Manufacture, 2006, (46) 1934 1 938.
  • 7Karpuschewski B, Wehmeier M, Inasaki I. Grindingmonitoring system based on power and acoustic emis- sion sensors[J]. Annals o{ the international academy for production engineering, 2000 ,49 (1) :235 240.
  • 8Jaynes E T. Information theory and statistical me chanics[J]. Phys. Rev. ,1957,(106) : 620--630.
  • 9ErikVan der Straeten. Superstatistical distributions from a maximum entropy principle[J]. Phys. Rev. E. , 2008,78(5) :1--5.
  • 10Pen61ope Ramireza, Jos6 Antonio Carta . The use of wind probability distributions derived from the maxi- mum entropy principle in the analysis of wind energy [J]. Energy Conversion and Management, 2006, 47 (15-16):2 564--2 577.

二级参考文献11

  • 1朱雪龙.应用信息论基础[M].北京:清华大学出版社,2002.14-44.
  • 2Kurata H, Zhao QY, Okuda R, et al. Integration of enzyme activities into metabolic flux distributions by elementary mode analysis. BMC Syst Biol, 2007, 1:31.
  • 3Lee JM, Gianchandani EP, Papin JA. Flux balance analysis in the era of metabolomics. BriefBioinform, 2006, 7(2): 140-150.
  • 4Segre D, Vitkup D, Church G.M. Analysis of optimality in natural and. perturbed metabolic networks. Proc Natl AcadSci USA, 2002, .99: 15112-15117.
  • 5Klamt S, Saez-Rodriguez J, Gilles ED. Structural and functional analysis of cellular networks with CellNetAnalyzer. BMC Syst Biol, 2007, 1: 2.
  • 6Sanchez AM, Bennett G.N, San KY. Batch culture characterization and metabolic flux analysis of succinate-producing Eschericbia coli strains. Metab Eng, 2006, 8: 209-226.
  • 7Junqua J C,Mak B,Reaves B.A robust algorithm for word boundary detection in the presence of noise[J].IEEE Trans on Speech and Audio Processing,1994,2(3):406-412.
  • 8Beritelli F,Casale S,Ruggeri G,et al.Performances evaluation and comparision of G.729/AMR/fuzzy voice activity detectors[J].IEEE Signal Processing Letters,2002,9(3):85-88.
  • 9Nemer E,Goubran R,Mahmoud S.Robust voice activity detection using higher-order statistics in the LPC residual domain[J].IEEE Trans on Speech and Audio Processing,2001,9(3):217-231.
  • 10Woo K H,Yang T Y,Park K J,et al.Robust voice activity detection algorithm for estimating noise spectrum[J].Electronics Letters,2000,36(2):180-181.

共引文献10

同被引文献20

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部