期刊文献+

基于WSN的目标探测与分类算法

Targets detection and classification based on WSN
在线阅读 下载PDF
导出
摘要 针对WSN监测系统的目标检测与分类问题,提出一种基于直觉模糊推理(IFR)的多源数据融合方法。由模糊推理的思想,设计各状态变量的属性函数。根据目标声强变化和引起的地磁场变化的模型,设计模糊推理规则,并检验了所建规则的合理性。理论分析与仿真结果的对比表明算法能准确地对目标进行分类,且运算量小,适用于计算能力较弱的WSN节点。 Aimed at the issue about the targets detection and classification in target monitoring system based on WSN, the study proposed a multi-sensor data fusion method based on intuitionistic fuzzy reasoning ( IFR ). The property functions of two status variables were designed according to the method of fuzzy reasoning. The study constructed the inference rules of the system after acoustic energy attenuation model and the variety of magnetic field model were built, and the rationality of constructed rules was checked. The comparison between theoretical analysis and simulation result show that intuitionistic fuzzy reasoning can classify targets uncomplicatedly and effectively. Because of its less calculation, the method can apply to WSN node, in which the calculation capacity is weak.
作者 潘仲明 张恒
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2013年第5期180-184,共5页 Journal of National University of Defense Technology
关键词 无线传感器网络 数据融合 目标分类 直觉模糊推理 wireless sensor network (WSN) data fusion target classification intuitionistic fuzzy reasoning(IFR)
作者简介 潘仲明(1959-),男,教授,博士,博士生导师,Email:chungmingpan@163.com
  • 相关文献

参考文献8

二级参考文献39

  • 1陈丹,郑增威,李际军.无线传感器网络研究综述[J].计算机测量与控制,2004,12(8):701-704. 被引量:100
  • 2史志富,张安,何胜强.基于贝叶斯网络的多传感器目标识别算法研究[J].传感技术学报,2007,20(4):921-924. 被引量:20
  • 3Li Y S, Thai M T, Wu W, Wireless Sensor Networks and Applications[M], Springer, 2008.
  • 4Chu M, Haussecker H, Zhao F, Scalable information--driven sensor querying and routing for ad hoc heterogeneous sensor networks [J]. International Journal of High Performance Computing Applications, 2002. 16 (3): p. 293-313.
  • 5Zhao F, Shin J, Reich J, Information--driven dynamic sensor collaboration for Tracking Application [J].IEEE Signal Processing Magazine, 2002. 19 (2): p. 61-72.
  • 6Liu J, Reich J, Zhao F, Collaborative in--network processing for target tracking [J]. EURASI PJournal on Applied Signal Processing, 2003 (1): p. 378-391.
  • 7Zhao F, Guibas L J, Wireless Sensor Networks: An Information Processing Approach[M], Morgan Kaufmann Pulishers, 2004.
  • 8Li D, Hu Y H, Energy Based Collaborative Source Localization Using Acoustic Micro--Sensor Array[J]. EUROSI PJournal on Applied Signal Processing, 2003 (4) : 321 - 337.
  • 9Sheng X H, Hu Y H, Energy Based Acoustic Source Localization [A]. In Proceedings of The 2nd International Worksho Pon information Processing in Sensor Networks [C]. 2003, p: 551 -566.
  • 10Sheng X H, Hu Y H, Maximum likelihood multiple--source localization using acoustic energy measurements with wireless sensor networks[J].IEEE Transactions on Signal Processing, 2005. 53 (1): 44-53.

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部