期刊文献+

FEM-SPH耦合算法模拟铝液粒化的动态过程

Numerical simulation for the dynamic process of aluminum liquid granulation with the algorithm of coupled FEM- SPH
在线阅读 下载PDF
导出
摘要 针对传统基于网格方法不能有效模拟大变形问题的现状,本文引入SPH(Smoothed Particle Hydrodynamic)方法模拟液态钢渣(文中简称液渣)与粒化轮的碰撞过程.因液渣物性参数尚不完善,故以铝液代替并使用SPH方法建模,粒化轮则用FEM(Finite Element Method)建模,并通过接触算法实现FEM.SPH的耦合,研究了粒化轮转速、铝液的流速等因素对碰撞过程铝液液滴体积大小的影响.模拟结果表明:当SPH粒子承载质量为2.04×10-4ks时,粒化轮转速达到900rad/min;粒化前铝液流速为1m/s时粒化效果较好且体积多分布在1330~1930mm3;碰撞后粒子运动速度多集中在5~25m/s. The SPH method is introduced to simulate the collision process between granulating wheel and:motten steel slag because the traditional method based on grid cannot effectively solve the large deformation problems. The molten steel slag was replaced by aluminum liquid since some of the physical parameters of molten steel slag are unclear so far. SPH method was adopted to simulate the granulating process of the aluminum liquid as well as the FEM was used to simulate the granulating wheel. Meanwhile, coupling the SPH method with FEM was realized by means of the" contacting algorithm". The effects of the granulating wheel speed and the velocity of aluminum liquid on the particle :size of aluminum droplet during the collision process were investigated. The simulation results indicate that the optimal granulating wheel speed and the aluminum liquid velocity are 900 rad/min and 1 m/s when the SPH particles bear the quality of 2.04 × 10 -4 kg, respectively. Under this condition, the single particle volume of most aluminum droplets is in the range of 1 330 - 1 930 mm3 when the particle speed after collision process is between 5 - 25 m/s.
出处 《材料科学与工艺》 EI CAS CSCD 北大核心 2013年第5期1-7,共7页 Materials Science and Technology
基金 国家自然科学基金资助项目(51034008 51004012) 中国博士后科学基金项目(20100480202) 中央高校基本科研业务费专项资金资助(FRF-TP-12-026A)
关键词 铝液粒化 SPH FEM 接触算法 数值模拟 aluminum liquid granulation SPH FEM contacting algorithm numerical simulation
作者简介 作者简介:徐啸雄(1988-),男,硕士研究生; 苍大强(1949-),男,教授,博士生导师 通信作者:刘晓明,E-mail:liuxm@ustb.edu.cn.
  • 相关文献

参考文献16

  • 1孙鹏,车玉满,郭天永,李连成,孙波.高炉渣综合利用现状与展望[J].鞍钢技术,2008(3):6-9. 被引量:22
  • 2TOSSAVAINEN M, ENGSTROM F, YANG Q, et al. Characteristics of steel slag under different cooling con- ditions[ J]. Waste Management, 2007, 27:1335 - 1344.
  • 3CAI W, LAVERNIA E. On the mechanism of mushy layer formation during droplet-based processing [ J ]. Metal Mater Trans B, 1999, 30:527 -539.
  • 4孙剑飞,曹福洋,崔成松,沈军,李庆春.金属雾化过程中气体流场动力学行为[J].粉末冶金技术,2002,20(2):79-81. 被引量:23
  • 5WANG S. A stable lagre deformation corrected SPH method based on stabilized conforming nodal integra- tion and lagrangian kernels [ J ]. International Journal of Computational Methods, 2012, 9 (4) : 1 - 26.
  • 6SAUER M. Simulation of high velocity impact in fluid- filled containers using finite elements with adaptive coupling to smoothed particle hydrodynamics [ J ]. International Journal of Impact Engineering, 2011, 38 (6) :511 -520.
  • 7LUCY L B. Numerical approach to testing the fission hypothesis [ J ]. Astronomical Journal, 1977, 88 (10) : 1013 - 1024.
  • 8GINGOLD R A, MONGAHAN J J. Smoothed particle hydrodynamics: theory and application to non-spheri- cal stars [ J ]. Monthly Notices of the Royal Astronomical Society, 1977, 181 : 375 -389.
  • 9JOHNSON G R, STRYK R A, BSISSEL S R. SPH for high velocity impact computations [ J ]. Computer Meth- ods in Applied Mechanics and Enginee-ring, 1996, 139:347-373.
  • 10JOHNSON G R, BSISSEL S R, STRYK R A. A gen-eraliz particle algorithm for high velocity impacted computations [ J ]. Computational Mechanics, 2000, 25 : 245 - 256.

二级参考文献52

共引文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部