期刊文献+

低幅值小应变振动下土体弹性刚度的非线性特征与表述方法 被引量:7

Nonlinear characteristics and determinate method of elastic stiffness for soils due to low-amplitude small-strain vibrations
在线阅读 下载PDF
导出
摘要 随着高速铁路建设的兴起,轨道以及沿线附近建筑物承受低幅值小应变振动荷载的作用。对于小应变振动下土体的有限元计算,如何确定连接应力和应变之间纽带的刚度张量E,对于建立合理的预测模型来分析高速铁路轨道以及沿线建筑物的沉降变形至关重要。低幅值小应变振动下剪切模量G和阻尼比D随剪应变幅值的变化是反映土体刚度及阻尼特征最重要的两个参数。通过共振柱试验发现,振动荷载作用下土体的剪切模量G必须通过振动应变幅值和固结围压共同来确定,即使在小应变(剪应变幅值10-6<<10-4)振动下,也会表现出明显的非线性特征。Davidenkov模型是在双曲线模型基础上为了更好地拟合剪切模量曲线G/G max-和阻尼比曲线D-的试验结果而提出的,不足之处在于Davidenkov模型的拟合参数过多,关键参数γ0的取值没有明确的物理方法。对于低幅值小应变振动情形,为了简便起见,忽略大应变振动情形下由于循环效应和速率效应引起的强度变化,在Mohr-Coulomb破坏准则的基础上,通过引入由给定应力状态下的静抗剪强度τf与最大剪切模量G max的比值来确定的参考剪应变ref来代替Davidenkov模型中的拟合参数0,尝试提出简化的两参数Davidenkov模型,并通过共(自)振柱试验验证了该方法对计算低幅值小应变振动情形下剪切模量和阻尼比的可行性。 Railway track and nearby structures in the vicinity of high-speed railway are exposed to low-amplitude small-strain vibrations as high-speed railway traffic construction activities arise. In the finite element (FE) method, how to determine the stiffness tensor E is important to build a rational predicting model to analyze the settlement of track and nearby structures in the vicinity of high-speed railway. Shear modulus G and damping ratio D which will vary with shear strain amplitude are two important stiffness and damping parameters. It is found through resonant column test study that the shear modulus G of soil due to vibrations must be determined by the strain amplitude and the confining pressure, even though under small-strain (shear strain amplitude 10-6〈y〈10-4) vibrations, will still show a remarkable nonlinear characteristic. The Davidenkov model based on the classical Hardin-Dmevich model is proposed to fit the experimental tests of the curves of shear modulus G/Gma~ and damping ratio D vs. ?'powerfully. However, the shortcoming of the Davidenkov model is that the fitting parameters are too much, and the key parameter y0 can't be determined through a definite physical method. This study proposes an simplified two-parameter Davidenkov model through using a reference shear strain yref which will be determined through the ratio of the shear strength rf of soil in static triaxial tests versus the maximum shear modulus Gmax at a given stress state instead of the fitting parameter y0 on the basis of Mohr-Coulomb failure criterion, and verifies the feasibility of the proposed method through tests finally.
出处 《岩土力学》 EI CAS CSCD 北大核心 2013年第11期3145-3150,3158,共7页 Rock and Soil Mechanics
基金 国家自然科学基金项目(No.51179186 No.51109208 No.41302219) 湖北省自然科学基金(No.2011CDB407)
关键词 两参数Davidenkov模型 共(自)振柱试验 剪切模量 阻尼比 two-parameter Davidenkov model resonant/free-vibration column test shear modulus damping ratio
作者简介 贾鹏飞,男,1981年生,博士,讲师,主要从事岩土动力学理论及灾害防治方面的研究。E-mail:pengfeia@nwu.edu.cn
  • 相关文献

参考文献16

  • 1ATKINSON J H. Non-linear soil stiffness in routine design[J]. Geoteehnique, 2000, 50(5): 487-508.
  • 2HARDIN B O, DRNEVICH V E Shear modulus and damping in soils: Measurement and parameter effects(Terzaghi Leture)[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(6): 603-624.
  • 3HARDIN B O, DRNEVICH V P. Shear modulus and damping in soils: Design equations and curves[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1972, 98(7): 667-692.
  • 4MASING Ct Eigenspannungen und verfestigung beim messing (Self stretching and hardening for brass)[C]// Proceedings of the Second International Congress for Appllied Mechanics. Zurich, Switzerland: [s. n.], 1926.
  • 5KONDNER R L. Hyperbolic stress-strain response: Cohesive soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1963, 89(1): 115 - 144.
  • 6DUNCAN J M, CHANG C Y. Nonlinear analysis of stress and strain in soils[J]. Journal of the Soil Mechanics and Foundations Division, ASCE, 1970, 96(5): 1629- 1653.
  • 7MARTIN P P, SEED H B. One-dimensional dynamic ground response analyses[J]. Journal of the Geoteehnieal Engineering Division, ASCE, 1982, 108(7): 935-952.
  • 8DARENDELI M B. Development of a new family of normalized modulus reduction and material damping curves[D]. Austin, USA: The University of Texas at Austin, 2001.
  • 9蒋通,邢海灵.围压对土动剪模量和阻尼比影响的简化计算方法[J].岩石力学与工程学报,2007,26(7):1432-1437. 被引量:17
  • 10CHEN Guo-xing, LIU Xue-zhu. The preliminary study on dynamic characteristics of recently deposited soils in southern area of Jiangsu Province, China[C]//Proceedings of the International Symposium on Innovation and Sustainability of Structures in Civil Engineering. Nanjing: [s. n.], 2005.

二级参考文献15

  • 1陈国兴,谢君斐,张克绪.土的动模量和阻尼比的经验估计[J].地震工程与工程振动,1995,15(1):73-84. 被引量:123
  • 2同济大学.上海市地震小区划研究报告[R].上海:同济大学,1992..
  • 3DARENDELI M B.Development of a new family of normalized moduli reduction and material damping curves[Ph.D.Thesis][D].Austin:University of Texas at Austin,2001.
  • 4ISHIBASHI I,ZHANG X.Unified dynamic shear moduli and damping ratios of sand and clay[J].Soils and Foundations,1993,33(1):182-191.
  • 5HARDIN B O,DRNEVICH V P.Shear modulus and damping in soils:design equation and curves[J].Journal of Soil Mechanics and Foundation Division,ASCE,1972,98(7):667-692.
  • 6BORDEN R H,SHAO L,GUPTA A.Dynamic properties of piedmont residual soils[J].Journal of Geotechnical Engineering,ASCE,1996,122(10):813-821.
  • 7PARK D,HASHASH Y M A.Evaluation of seismic site factors in the Mississippi Embayment.I.estimation of dynamic properties[J].Soil Dynamics and Earthquake Engineering,2005,25(2):133-144.
  • 8HASHASH Y M A,PARK D.Non linear one-dimensional seismic ground motion propagation in the Mississippi Embayment[J].Engineering Geology,2001,62(1):185-206.
  • 9PESTANA J M,WHITTLE A J.Formulation of a unified constitutive model for clays and sands[J].International Journal for Numerical and Analytical Methods in Geomechanics,1999,23(12):1 215-1 243.
  • 10HARTZELL S,BONILLA L F,WILLIAMS R A.Prediction of nonlinear soil effects[J].Bulletin of Seismological Society of America,2004,94(5):1 609-1 629.

共引文献19

同被引文献78

引证文献7

二级引证文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部