期刊文献+

Rician噪声水平场的估计及其在MR图像去噪中的应用 被引量:2

Estimation of Spatially Variable Level Field of Rician Noise and its Application to MR Image Denoising
在线阅读 下载PDF
导出
摘要 针对MR图像中空间变化Rician噪声的抑制问题,提出了一种噪声水平场的估计方法,同时结合方差稳定变换和BM3D算法实现MR图像的去噪。噪声水平场通过Rician噪声水平的局部估计和稀疏性约束模型进行估计,利用噪声水平场对噪声图像幅值进行空间自适应方差稳定变换,使得噪声与信号幅值和空间位置无关,采用BM3D算法即可实现对噪声的抑制,最后通过方差稳定逆变换得到无偏的去噪图像。仿真实验中,噪声水平场估计的平均相对误差小于0.2%,利用空间自适应方差稳定变换进行去噪,相比方差稳定变换,去噪图像的峰值信噪比可提高2 dB;采用真实乳腺MR图像进行去噪实验,利用自适应方差稳定变换可得到较高的Q度量。结果表明,所提出的方法能有效估计Rician噪声水平场,并用于抑制MR图像中空间变化的噪声。 The levels of Rician noise in MR images vary spatially. A method to estimate the noise level field (NLF) was proposed in this paper for denoising the spatially variable noise. The NLF was fitted using the estimations of local noise levels and a NLF model with the sparsity constraint. Then, the noisy MR images were made to be homoscedastic by the spatially adaptive variance-stabilization transformations with the estimated NLF. Thus, BM3D algorithm was adopted to suppress the noise in the transformed images. Experimental results on the synthetic and real images demonstrate that the proposed method effectively estimates the NLF and the estimated NLF is useful for denoising the spatially variable Rician noise. The mean relative error of the estimated noise levels was less than 0.2%. Compared with other denoising methods for MR images, the method with NLF performed better and PSNR was improve about 2 dB. The results demonstrate that the proposed method can effectively estimate the Rician noise level field and can be used to suppress the spatially variable Rician noise.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2013年第5期532-538,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学青年基金(81101109) 国家重点基础研究发展计划(973计划)(2010CB732505)
关键词 Rician噪声 噪声水平场 方差稳定变换 BM3D Rician noise noise level field variance-stabilization transformation BM3 D
作者简介 通信作者。E-mail:weiyanggm@gmail.com
  • 相关文献

参考文献16

  • 1陈武凡.并行磁共振成像的回顾、现状与发展前景[J].中国生物医学工程学报,2005,24(6):649-654. 被引量:19
  • 2Buades A, Coil B, Morel JM. A review of image denoising algorithm, with a new one [ J]. SIAM Muhiscaie Modeling and Simulation, 2005, 4 (2) : 490 - 530.
  • 3Dabov K, Foi A, Katkovnik V, at al. Image denoising by sparse3D transform-domain collaborative filtering [ J]. IEEE Trans hnage Process, 2007, 16(8 ) :2080 -2095.
  • 4Foi A. Noise estimation and removal in MR imaging: the variance-stabilization approach [ C ]// IEEE International Symposium on Biomedical Imaging. Chicago : IEEE, 2011 : 1809 1814.
  • 5Manjon JV, Coupe P, Marti - Bonmati L, et al. Adaptive non- local means denoising of MR images with spatially varying noise levels [ J]. Magn Reson Imaging, 2010, 31(1):192-203.
  • 6Sijbers J, Poor D, Dekker AJ, et al. Automatic estimation of the noise variance from the histogram of a magnetic resonance image [J]. Phys Med Biol, 2007, 52(5):1335-1348.
  • 7Foi A. Optimization of variance-stabilizing transformations [ OL ]. http ://www. cs. tut. fi/- foi/.
  • 8Zheng Yuanjie. Estimation of image bias field with sparsity constraints [ C ]//Computer Vision and Pattern Recognition ( CVPR). San Francisco: 1EEE Computer Society, 2010 : 255 - 262.
  • 9王浩.求解正则化问题的算法研究[D].北京:北京航空航天大学,2010.
  • 10Kim SJ, Koh K, Lustig M, at al. An interior-point method for large-scale ll-regularized least squares [ J ]. IEEE Signal Processing, 2007,1 ( 4 ) :606 - 617.

二级参考文献18

  • 1Carlson JW.An algorithm for NMR imaging reconstruction based on multiple RF receiver coils[J].J Magn Reson,1987,74:376-380.
  • 2Ra JB,Rim CY.Fast imaging using subencoding data sets from multiple detectors[J].Magn Reson Med,1993,30(1):142-145.
  • 3Blaimer M,Breuer F,Mueller M,et al.SMASH,SENSE,PILS,GRAPPA:How to choose the optimal method[J].Top Magn Reson Imaging,2004,15:223-236.
  • 4Sodickson DK,Manning WJ.Simultaneous acquisition of spatial harmonics(SMASH):fast imaging with radiofrequency coil arrays[J].Magn Reson Med,1997,38(4):591-603.
  • 5Jakob PM,Griswold MA,Edelman RR,et al.AUTO-SMASH:a self-calibrating technique for SMASH imaging[J].MAGMA,1998,7:42-54.
  • 6Heidemann RM,Griswold MA,Haase A,et al.VD-AUTO-SMASH imaging[J].Magn Reson Med,2001,45(6):1066-1074.
  • 7Griswold MA,Jakob PM,Heidemann RM,et al.Generalized autocalibrating partially parallel acquisitions(GRAPPA)[J].Magn Reson Med,2002,47(6):1202-1210.
  • 8Bydder M,Larkman DJ,Hajnal JV.Generalized SMASH imaging[J].Magn Reson Med,2002,47(1):160-170.
  • 9Pruessmann KP,Weiger M,Scheidegger MB,et al.Sensitivity encoding for fast MRI[J].Magn Reson Med,1999,42(5):952-962.
  • 10Griswold MA,Jakob PM,Nittka M,et al.Partially parallel imaging with localized sensitivities(PILS)[J].Magn Reson Med,2000,44:602-609.

共引文献18

同被引文献10

引证文献2

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部